首页> 外文期刊>Physics of plasmas >Steady-state sustainment of high-beta plasmas through stability control in Japan Atomic Energy Research Institute Tokamak-60 Upgrade
【24h】

Steady-state sustainment of high-beta plasmas through stability control in Japan Atomic Energy Research Institute Tokamak-60 Upgrade

机译:日本原子能科学研究所Tokamak-60升级版通过稳定性控制稳定维持高β等离子体

获取原文
获取原文并翻译 | 示例
           

摘要

Recent results from steady-state sustainment of high-beta plasma experiments in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) tokamak [A. Kitsunezaki , Fusion Sci. Technol. 42, 179 (2002)] are described. Extension of discharge duration to 65 s (formerly 15 s) has enabled physics research with long time scale. In long-duration high-beta research, the normalized beta beta(N)=2.5, which is comparable to that in the steady-state operation in International Thermonuclear Experimental Reactor (ITER) [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], has been sustained for about 15 s with confinement enhancement factor H-89PL above 2, where the duration is about 80 times energy confinement time and similar to 10 times current diffusion time (tau(R)). In the scenario aiming at longer duration with beta(N)similar to 1.9, which is comparable to that in the ITER standard operation scenario, duration has been extended to 24 s (similar to 15 tau(R)). Also, from the viewpoint of collisionality and Larmor radius of the plasmas, these results are obtained in the ITER-relevant regime with a few times larger than the ITER values. No serious effect of current diffusion on instabilities is observed in the region of beta(N)less than or similar to 2.5, and in fact neoclassical tearing modes (NTMs), which limit the achievable beta in the stationary high-beta(p) H-mode discharges, are suppressed throughout the discharge. In high-beta research with the duration of several times tau(R), a high-beta plasma with beta(N)similar to 2.9-3 has been sustained for 5-6 s with two scenarios for NTM suppression: (a) NTM avoidance by modification of pressure and current profiles, and (b) NTM stabilization with electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH). NTM stabilization with the second harmonic X-mode ECCD/ECH has been performed, and it is found that EC current density comparable to bootstrap current density at the mode location is required for complete stabilization. Structure of a magnetic island associated with an m=3/2 NTM has been measured in detail (m and n are poloidal and toroidal mode numbers, respectively). By applying newly developed analysis method using motional Stark effect (MSE) diagnostic, where change in current density is directly evaluated from change in MSE pitch angle without equilibrium reconstruction, localized decrease/increase in current density at the mode rational surface is observed for NTM growth/suppression. In addition, it is found that characteristic structure of electron temperature perturbation profile is deformed during NTM stabilization. Hypothesis that temperature increase inside the magnetic island well explains the experimental observations. It is also found that the characteristic structure is not formed for the case of ECCD/ECH before the mode, while the structure is seen for the case with ECCD/ECH just after the mode onset, suggesting the stronger stabilization effect of the early EC wave injection. (c) 2005 American Institute of Physics.
机译:日本原子能科学研究所Tokamak-60升级(JT-60U)tokamak的高β等离子体实验的稳态维持的最新结果[A. Kitsunezaki,融合科学。技术。 42,179(2002)]中描述。放电持续时间延长至65 s(以前为15 s)使物理学研究得以长期发展。在长期的高β研究中,归一化的beta beta(N)= 2.5,与国际热核实验堆(ITER)的稳态运行相当[R. Aymar,P.Barabaschi和Y.Shimomura,等离子物理。受控融合44,519(2002)],在约束增强因子H-89PL大于2的情况下持续了约15 s,其中持续时间约为能量约束时间的80倍,而电流扩散时间约为10倍(tau(R) )。在针对beta(N)的持续时间更长的场景(类似于1.9,与ITER标准操作场景中的场景类似)中,持续时间已延长至24 s(类似于15 tau(R))。同样,从等离子体的碰撞性和拉莫尔半径的角度来看,这些结果是在ITER相关方案中获得的,其结果是ITER值的几倍。在小于或等于2.5的beta(N)区域中,未观察到电流扩散对不稳定性的严重影响,实际上,新古典撕裂模式(NTM)限制了固定的高beta(p)H中可实现的beta模式放电在整个放电过程中被抑制。在持续时间数倍tau(R)的高β研究中,具有两种类似于2.9-3的beta(N)的高β血浆已经持续了5-6 s,并有两种抑制NTM的方案:(a)NTM避免通过修改压力和电流曲线,以及(b)通过电子回旋加速器电流驱动(ECCD)/电子回旋加速器加热(ECH)来稳定NTM。已经执行了使用二次谐波X模式ECCD / ECH的NTM稳定化,并且发现完全稳定需要在模式位置可与自举电流密度相媲美的EC电流密度。已经详细测量了与m / n = 3/2 NTM相关的磁岛的结构(m和n分别是极谱模数和环形模数)。通过应用新开发的使用运动斯塔克效应(MSE)诊断的分析方法,可以从MSE俯仰角的变化直接评估电流密度的变化,而无需平衡重建,可以观察到模式有理表面上电流密度的局部减小/增加,从而促进NTM生长/抑制。另外,发现在NTM稳定化期间电子温度扰动分布的特征结构变形。磁岛内部温度升高的假设解释了实验观察。还发现在模式之前的ECCD / ECH情况下没有形成特征结构,而在模式开始后的ECCD / ECH情况下可以看到该结构,表明早期EC波的稳定作用更强。注射。 (c)2005年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号