首页> 外文期刊>Physical review, E. Statistical physics, plasmas, fluids, and related interdisciplinary topics >Translational diffusion of liquids at surfaces of microporous materials: Theoretical analysis of field-cycling magnetic relaxation measurements
【24h】

Translational diffusion of liquids at surfaces of microporous materials: Theoretical analysis of field-cycling magnetic relaxation measurements

机译:液体在微孔材料表面的平移扩散:场循环磁弛豫测量的理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

We present a theory of nuclear-spin relaxation appropriate to the care of a. mobile liquid dipolar spin diffusing in a quasi-two-dimensional model porous system in the presence of rare paramagnetic impurities fixed at the surface of the pores. This theory predicts that the H-1 spin-lattice relaxation rate will be linear in two parts when plotted as a function of the logarithm of the magnetic-field strength and the slopes Of these distinct linear regions should be in the ratio 10:3. The theory predicts also a typical pore size dependence for such a rate. The theory is tested at several temperatures using acetone, acetonitrile, dimethylformamide, and dimethylsulfoxide on microporous chromatographic glass bends that have paramagnetic ion impurities at the level of 40 ppm. H-1 spin-lattice relaxation rates are recorded over magnetic-field strengths corresponding to H-1 Larmor frequencies between 0.01 and 30 MHz using a field-switched magnetic relaxation dispersion spectrometer. The data support the theory quantitatively. The diffusion constant D(sic) for the proton-bearing molecule perpendicular to the normal of the pore surface is found to be nearly a factor of 10 smeller than in the bulk solvents. It is characterized by a small activation energy similar to those in the bulk solvent. These results demonstrate that magnetic relaxation dispersion at low magnetic-field strengths in high-surface-area heterogeneous systems may be quantitatively understood in terms of the parameters of the spatial confinement and the local translational dynamics.
机译:我们提出了一种适合于a的核自旋弛豫理论。固定在孔表面的稀有顺磁性杂质存在下,在准二维模型多孔系统中移动液体偶极自旋扩散。该理论预测,当绘制H-1自旋晶格弛豫率时,将根据磁场强度和对数的对数进行绘制,而H-1自旋晶格弛豫率在两个部分中将是线性的,这些不同的线性区域的斜率应为10:3。该理论还预测了这种速率的典型孔径依赖性。该理论在丙酮,乙腈,二甲基甲酰胺和二甲基亚砜等数种温度下在顺磁性离子杂质含量为40 ppm的微孔色谱玻璃弯管上进行了测试。使用场切换磁弛豫色散谱仪在对应于H-1拉莫尔频率介于0.01和30 MHz之间的磁场强度下记录H-1自旋晶格弛豫速率。数据定量地支持了该理论。垂直于孔表面的法线的带有质子的分子的扩散常数D(sic)被发现比在散装溶剂中的扩散常数D(sic)接近十个臭味。它的特点是活化能小,类似于本体溶剂中的活化能。这些结果表明,根据空间限制和局部平移动力学的参数,可以定量地理解高表面积异质系统中低磁场强度下的磁弛豫色散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号