首页> 外文期刊>Biomass Conversion and Biorefinery >Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology
【24h】

Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology

机译:使用响应面法对Tween 80进行糖化蔗糖蔗糖碱性过氧化氢预处理的统计优化

获取原文
获取原文并翻译 | 示例
           

摘要

Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6%w/v), pretreatment time (10–40 h) and liquid/solid ratio (8–20 v/w) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 % w/v hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1 v /w liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 % w/v) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 % w/v for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.
机译:甘蔗渣是一种在甘蔗汁提取后构成超过25%加工物质的副产品,由于其高含量的半纤维素和纤维素,因此是增值产品(如生物乙醇和木糖醇)的低成本可再生基质。在这项研究中,采用Box–Behnken响应面方法设计来优化碱性双氧水对稀酸处理甘蔗渣的预处理。测试过氧化氢浓度(2–6%w / v),预处理时间(10–40 h)和液/固比(8–20 v / w),以便在酶促水解过程中最大化葡萄糖的产生。获得的最佳条件是4.7%w / v的过氧化氢浓度,26.7小时的预处理时间和17.1 v / w的液/固比,在72小时的水解中产生31.1 g / L的葡萄糖(40.2%的葡萄糖产率)。优化碱性过氧化氢预处理后,第二个Box–Behnken设计用于评估纤维素酶上样量(3.4-5.6滤纸单位(FPU)/ g固体),β-葡萄糖苷酶上样量(15-27β-葡萄糖苷酶单位( CBU)/克固体)和吐温80浓度(0.11-1.7%w / v)在酶促水解过程中产生的葡萄糖。通过分析响应表面图和时程水解,使用纤维素酶的4.1 FPU / g固体,β-葡萄糖苷酶的18.2 CBU / g固体和0.95%的w在120-h水解下获得了50.1 g / L葡萄糖(64.8%的葡萄糖产率)。 /吐温80。与不添加吐温80相比,该产率对应于葡萄糖浓度提高29%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号