...
首页> 外文期刊>Physical Review, B. Condensed Matter >PHOTOELECTRIC EMISSION FROM NEGATIVE-ELECTRON-AFFINITY DIAMOND (111) SURFACES - EXCITON BREAKUP VERSUS CONDUCTION-BAND EMISSION
【24h】

PHOTOELECTRIC EMISSION FROM NEGATIVE-ELECTRON-AFFINITY DIAMOND (111) SURFACES - EXCITON BREAKUP VERSUS CONDUCTION-BAND EMISSION

机译:负电子亲和性钻石(111)表面的光电子发射-激子分解对导电带发射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We have recently reported that bound electron-hole pairs (Mott-Wannier excitons) are the dominant source of photoelectron emission from specially prepared [''as-polished'' C(111)-(1X1):H] negative-electron-affinity diamond surfaces for near-band-gap excitation up to 0.5 eV above threshold [C. Bandis and B. B. Fate, Phys. Rev. Lett. 74, 777 (1995)]. It was found that photoexcited excitons transport to the surface, break up, and emit their electron. In this paper, we extend the study of exciton-derived emission to include partial yield (constant final-state) analysis as well as angular distribution measurements of the photoelectric emission. In addition, we find that exciton-derived emission does not always dominate. Photoelectric emission properties of the in situ ''rehydrogenated'' (111)-(1X1):H diamond surface are characteristically different than emission observed from the as-polished (111)-(1X1):H surface. The rehydrogenated surface has additional downward band bending as compared to the as-polished surface. In confirmation of the assignment of photoelectric yield to exciton breakup emission, we find a significant enhancement of the total electron yield when the downward band bending of the hydrogenated surface is increased. The functional form of the observed total electron yield demonstrates that, in contrast to the as-polished surface, conduction-band electrons are a significant component of the observed photoelectric yield from the in situ hydrogenated (111)-(1X1):H surface. Furthermore, electron emission characteristics of the rehydrogenated surface confirms our assignment of a Fan phonon-cascade mechanism for thermalization of excitons. [References: 89]
机译:我们最近报道,束缚的电子-空穴对(Mott-Wannier激子)是特殊制备的[“抛光” C(111)-(1X1):H]负电子亲和力的主要电子发射源金刚石表面用于近带隙激发,最高可超过阈值0.5 eV [C. Bandis和B. B. Fate,物理学。牧师74,777(1995)]。发现光激发的激子运到表面,分解并发射电子。在本文中,我们扩展了对激子源发射的研究,以包括部分屈服(恒定最终状态)分析以及光电发射的角度分布测量。此外,我们发现,激子发射并不总是占主导地位。原位``重新氢化''(111)-(1X1):H金刚石表面的光电发射特性与从抛光后的(111)-(1X1):H表面观察到的发射特性不同。与抛光后的表面相比,再氢化的表面具有额外的向下弯曲带。在确认光电收率分配给激子分解发射时,我们发现当氢化表面的向下能带弯曲增加时,总电子收率显着提高。观察到的总电子产率的功能形式表明,与抛光后的表面相反,导带电子是从原位氢化(111)-(1X1):H表面观察到的光电产率的重要组成部分。此外,再氢化表面的电子发射特性证实了我们对激子热化的Fan声子级联机制的指定。 [参考:89]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号