首页> 外文期刊>Physical review, B >Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory
【24h】

Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

机译:时变密度泛函理论解释单斜氧化氢价电子能谱

获取原文
获取原文并翻译 | 示例
           

摘要

We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m-HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m-HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks similar to 28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5p and 4f) on the energy-loss spectrum, and find that the inclusion of transitions from the 4f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio GW calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.
机译:我们介绍了价电子能量损失谱和单斜氧化ha(m-HfO2)的介电函数,它们是从随时间变化的密度泛函理论(TDDFT)预测中获得的,并在高分辨率透射比分析中与能量过滤光谱成像测量进行了比较。电子显微镜。费米的黄金法则密度泛函理论(DFT)计算可以捕获能量损失谱的定性特征,但是我们发现,考虑局部场效应的TDDFT与实验几乎提供了定量一致性。使用状态的DFT密度和TDDFT介电函数,我们表征了导致m-HfO2能量损失谱的激发。唯一的等离激元发生在13和16 eV之间,尽管类似于28和高于40 eV的峰也是由于集体激发。我们还将详细介绍所使用的第一原理技术,其准确性以及光谱之间的剩余差异。更具体地说,我们评估了Hf半芯电子(5p和4f)对能量损失谱的影响,并发现包含4f能带的跃迁会衰减13 eV以上区域的能量损失强度。我们使用绝热局部密度近似(ALDA)交换相关核研究DFT框架中多体效应的影响,以及从多体角度使用匹配从头算GW计算的“剪刀算子”来研究解释自能量校正。这些结果表明,即使是从Hf 4f壳层激发,也抵消了自能和激子效应之间的误差。我们还模拟了随着等离激元和集体激发峰动量传递的增加而发生的色散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号