首页> 外文期刊>Physics of fluids >Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shift
【24h】

Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shift

机译:非线性火箭发动机稳定性预测:极限幅度,触发和平均压力偏移

获取原文
获取原文并翻译 | 示例
           

摘要

High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed. (c) 2007 American Institute of Physics.
机译:固体推进剂火箭发动机燃烧室中的高振幅压力振荡表现出非线性效应,包括:(1)极限循环行为,其中波动可能会在其峰值振幅附近停留相当长的时间,(2)升高的平均燃烧室压力(直流偏移) ),以及(3)触发振幅,在该振幅以上,脉冲将导致明显稳定的系统转变为剧烈振荡。除了明显的不良振动外,这些特征还构成了燃烧不稳定性对系统可靠性和结构完整性造成的最大破坏性影响。因此,如果要在设计过程中避免不稳定性,或者在系统开发过程中必须采取有效的纠正措施,则必须充分理解这些现象背后的物理机制及其与电动机几何形状和物理参数的关系。现在使用的预测算法表征振荡的实际时间演变的能力有限,并且它们无法为电动机设计人员提供有关峰值幅度或相关的临界触发幅度的信息。一个关键的缺失要素是预测平均压力变化的能力。显然,设计者需要有关电动机运行期间可能遇到的最大腔室压力的信息。在本文中,描述了提供重要信息的综合非线性燃烧不稳定性模型。强调了陡波在波浪中的核心作用。所得算法既提供了非线性不稳定现象的详细物理模型,又提供了迫切需要的预测能力。特别地,揭示了DC偏移的起源。 (c)2007年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号