...
首页> 外文期刊>Physics of fluids >Taylor dispersion in heterogeneous porous media: Extended method of moments, theory, and modelling with two-relaxation-times lattice Boltzmann scheme
【24h】

Taylor dispersion in heterogeneous porous media: Extended method of moments, theory, and modelling with two-relaxation-times lattice Boltzmann scheme

机译:非均质多孔介质中的泰勒色散:矩量,理论和建模的扩展方法,具有两个松弛时间格玻尔兹曼格式

获取原文
           

摘要

This article describes a generalization of the method of moments, called extended method of moments (EMM), for dispersion in periodic structures composed of impermeable or permeable porous inclusions. Prescribing pre-computed steady state velocity field in a single periodic cell, the EMM sequentially solves specific linear stationary advection-diffusion equations and restores any-order moments of the resident time distribution or the averaged concentration distribution. Like the pioneering Brenner’s method, the EMM recovers mean seepage velocity and Taylor dispersion coefficient as the first two terms of the perturbative expansion. We consider two types of dispersion: spatial dispersion, i.e., spread of initially narrow pulse of concentration, and temporal dispersion, where different portions of the solute have different residence times inside the system. While the first (mean velocity) and the second (Taylor dispersion coefficient) moments coincide for both problems, the higher moments are different. Our perturbative approach allows to link them through simple analytical expressions. Although the relative importance of the higher moments decays downstream, they manifest the non-Gaussian behaviour of the breakthrough curves, especially if the solute can diffuse into less porous phase. The EMM quantifies two principal effects of bi-modality, as the appearance of sharp peaks and elongated tails of the distributions. In addition, the moments can be used for the numerical reconstruction of the corresponding distribution, avoiding time-consuming computations of solute transition through heterogeneous media. As illustration, solutions for Taylor dispersion, skewness, and kurtosis in Poiseuille flow and open/impermeable stratified systems, both in rectangular and cylindrical channels, power-law duct flows, shallow channels, and Darcy flow in parallel porous layers are obtained in closed analytical form for the entire range of Péclet numbers. The high-order moments and reconstructed profiles are compared to their predictions from the advection-diffusion equation for averaged concentration, based on the same averaged seepage velocity and Taylor dispersion coefficient. In parallel, we construct Lattice-Boltzmann equation (LBE) two-relaxation-times scheme to simulate transport of a passive scalar directly in heterogeneous media specified by discontinuous porosity distribution. We focus our numerical analysis and assessment on (i) truncation corrections, because of their impact on the moments, (ii) stability, since we show that stable Darcy velocity amplitude reduces with the porosity, and (iii) interface accuracy which is found to play the crucial role. The task is twofold: the LBE supports the EMM predictions, while the EMM provides non-trivial benchmarks for the numerical schemes.
机译:本文介绍了矩量法的一般化,称为扩展矩量法(EMM),用于分散在由不可渗透或可渗透的多孔包裹体组成的周期性结构中。在单个周期单元中规定了预先计算的稳态速度场,EMM依次求解特定的线性平稳对流扩散方程,并恢复驻留时间分布或平均浓度分布的任意阶矩。像开创性的Brenner方法一样,EMM将平均渗透速度和泰勒弥散系数作为扰动膨胀的前两项进行恢复。我们考虑两种类型的色散:空间色散,即最初窄浓度脉冲的散布,以及时间色散,其中溶质的不同部分在系统中的停留时间不同。虽然这两个问题的第一(平均速度)和第二(泰勒色散系数)力矩一致,但较高的力矩却不同。我们的摄动方法允许通过简单的分析表达式将它们链接起来。尽管较高矩的相对重要性在下游衰减,但它们显示了突破曲线的非高斯行为,尤其是在溶质可以扩散到孔隙度较小的相中的情况下。 EMM量化了双峰的两个主要影响,即分布的尖峰和拉长尾巴的出现。此外,这些矩可用于相应分布的数值重建,避免了费时的通过异质介质的溶质跃迁计算。作为说明,在封闭分析中获得了矩形和圆柱形通道,幂律导管流,浅通道和达西流在平行多孔层中的泊瓦耶流和开放/不渗透分层系统中泰勒色散,偏斜和峰度的解决方案整个Péclet数字范围的表格。基于相同的平均渗流速度和泰勒弥散系数,将高阶矩和重构剖面与对流扩散方程对平均浓度的预测结果进行比较。并行地,我们构造了Lattice-Boltzmann方程(LBE)两次弛豫时间方案,以模拟无源标量直接在由不连续孔隙度分布指定的非均质介质中的传输。我们的数值分析和评估集中在(i)截断校正,因为它们会影响弯矩;(ii)稳定性,因为我们证明了稳定的达西速度振幅随孔隙率的降低而降低,以及(iii)界面精度起关键作用。任务是双重的:LBE支持EMM预测,而EMM为数值方案提供非平凡的基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号