首页> 外文期刊>Physics of fluids >Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales
【24h】

Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales

机译:纳米尺度下简单液体线性可压缩粘弹性流动的本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nano-meter scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits-such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows. (C) 2015 AIP Publishing LLC.
机译:通常将简单的散装液体(例如水)假定为牛顿型。尽管这一假设广泛适用,但纳米级机械设备的流体-结构相互作用可以探测周围液体中固有的分子弛豫过程。最近通过测量双锥体纳米颗粒在简单液体中的高频(20 GHz)线性机械振动证明了这一点[Pelton等,“通过振动纳米结构产生的简单液体中的粘弹性流动”,Phys。牧师111,244502(2013)]。在本文中,我们回顾并严格评估了可压缩粘弹性流动在其线性范围内的可用本构方程-此类模型对于上述测量的分析是必需的。我们显示,除最近的提议外,以前的模型不会以很高的频率重现所需的响应。我们解释了此最新模型的物理起源,并表明它可以恢复线性粘弹性流的所有必需特征。因此,该本构方程为分析简单液体中的振动纳米结构提供了严格的基础。通过解决两个常见问题的流固耦合,证明了该模型的实用性:(1)在液体中执行径向振荡的球体,这在很大程度上取决于液体的可压缩性;(2)双锥体纳米粒子在液体中的拉伸模式振动,其中液体可压缩性的影响可以忽略不计。这凸显了剪切和压缩松弛过程的重要性,这取决于流动的几何形状,以及剪切和体积粘度对纳米尺度流动的影响。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号