首页> 外文期刊>Physics of fluids >A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source
【24h】

A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source

机译:确定表面切应力波动是否是真实声源的数值实验

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The sound generated due to a localized flow over a large (compared to the acoustic wavelength) plane no-slip wall is considered. It has been known since 1960 that for inviscid flow the pressure, while appearing to be a source of dipole sound in a formal solution to the Lighthill equation, is, in fact, not a true dipole source, but rather represents the surface reflection of volume quadrupoles. The subject of the present work-namely, whether a similar surface shear stress term constitutes a true source of dipole sound-has been controversial. Some have boldly assumed it to be a true source and have used it to calculate the noise in boundary-layer flows. Others have argued that, like the surface pressure, the surface shear stress is not a valid source of sound but rather represents a propagation effect. Here, a numerical experiment is undertaken to investigate the issue. A portion of an otherwise static wall is oscillated tangentially in an acoustically compact region to create shear stress fluctuations. The resulting sound field, computed directly from the compressible Navier-Stokes equations, is nearly dipolar and its amplitude agrees with an acoustic analogy prediction that regards the surface shear as acoustically compact and as a true source of sound. However, there is a correction that becomes noticeable for observers near wall-grazing angles as the computational domain size L-d along the wall is increased. An estimate, validated by the simulations, shows that as L-d-+AD4-infinity the correction to the sound in the Fraunhofer zone is proportional to delta(bl)/lambda (the ratio of oscillatory boundary-layer thickness to acoustic wavelength) times a directivity factor that becomes large at angles close to grazing. For observers at such angles, Lighthill's acoustic analogy does not apply. (c) 2005 American Institute of Physics.
机译:考虑了由于在较大(相对于声波波长)平面的防滑壁上局部流动而产生的声音。自1960年以来,众所周知,对于无粘性流,压力在形式上为Lighthill方程的形式上似乎是偶极子声源,但实际上不是真正的偶极子源,而是代表体积的表面反射。四极。本工作的主题,即类似的表面剪切应力项是否构成了偶极子声的真实来源,一直存在争议。有些人大胆地认为它是真正的污染源,并用它来计算边界层流中的噪声。其他人认为,像表面压力一样,表面剪应力不是有效的声源,而是代表传播效果。在这里,进行了数值实验以调查此问题。否则,静态壁的一部分在声学上紧凑的区域内切向振动,以产生切应力波动。直接从可压缩的Navier-Stokes方程计算得到的声场几乎是偶极的,并且其幅度与声学类比预测一致,该预测将表面剪切视为声学紧实的和真实的声源。但是,随着沿着墙壁的计算域大小L-d的增加,对于靠近墙壁掠角的观察者来说,这种校正变得很明显。通过仿真验证的估计表明,随着Ld- + AD4-无穷大,弗劳恩霍夫带中的声音校正量与delta(bl)/ lambda(振荡边界层厚度与声波波长之比)乘以a方向性因子在接近掠射角时变大。对于以这样的角度观察的人,Lighthill的声学比喻不适用。 (c)2005年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号