首页> 外文期刊>Physics of fluids >Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings
【24h】

Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

机译:瞬态力增强的机制在两个不同的时间尺度上变化以相互作用涡环

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokeswhich have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.
机译:在由活塞缸装置组成的模型系统中,对双涡流环流的动力学进行了实验和数值研究。流量是由两个相同的笔划产生的,这些笔划的速度曲线的特征是周期为一半的正弦函数。通过在实验中计算两个冲程的总尾流冲动,发现与第一冲程相比,对于足够小的冲程长度,第二冲程的平均推进力增加了50%。在数值模拟中,揭示了两种类型的瞬态力增大,对于较小的行程长度存在瞬态力增大,对于较大的行程长度存在绝对瞬态力增大。 L / D = 1时,相对瞬态力增加到78%,而L / D = 4时,绝对瞬态力增加是L / D = 1时的两倍。进一步的研究表明,力的增加归因于涡环之间的相互作用,导致涡动脉冲的传输和更明显的流体夹带。定义并指出了涡流环分离的临界情况,当冲程长度变化时,涡流间距会落在狭窄的间隙中。提出了一个关于冲动极限过程的新模型,进一步表明,除了涡旋形成的时间尺度,涡旋间隔还应被解释为一个独立的时间尺度,以反映涡旋相互作用的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号