...
首页> 外文期刊>Physics of fluids >Computational study of the shock driven instability of a multiphase particle-gas system
【24h】

Computational study of the shock driven instability of a multiphase particle-gas system

机译:多相颗粒-气体系统冲击驱动不稳定性的计算研究

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 mu m, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas At wood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets. (C) 2016 AIP Publishing LLC.
机译:本文考虑了冲击波与多相粒子-气体系统的相互作用,该系统在某些方面产生了类似于Richtmyer-Meshkov不稳定性的不稳定性,但具有较大的参数空间。由于此参数空间很大,因此我们仅对其中许多参数的影响进行介绍性调查。我们重点介绍了颗粒-气体耦合,入射冲击强度,颗粒大小,有效系统密度差异以及多个颗粒弛豫时间效应的影响。我们专注于质量负载高达40%的稀流,并且不尝试涵盖所有参数组合。取而代之的是,我们一次更改一个参数,而将其他参数组合留给以后的工作。仿真是由劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)开发的Ares代码运行的,该代码使用多相颗粒传输方法来建模双向动量和能量耦合。对这些模型进行了简要验证,并探讨了耦合效应。结果表明,即使对于1μm量级的小颗粒,多相耦合效应也很重要,并且最多可将界面上的循环沉积减少25%。这些耦合效应显示出与含尘气体近似值之间存在较大的温度偏差,最大偏差高达20%,尤其是在较高的冲击强度下。还发现对于多相不稳定性,在界面处沉积的涡流片分成两片。取决于颗粒和颗粒气体。在木材数量上,这两个涡旋片的相互作用可以抑制或增强不稳定性。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号