首页> 外文期刊>Physics of fluids >Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow
【24h】

Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

机译:大涡模拟专用实验数据库对亚网格规模模型的评估:湍流横流中的脉冲撞击射流

获取原文
获取原文并翻译 | 示例
           

摘要

Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution. Indeed, the shear-stress near the wall increases during the vortex-ring impingement leading to a less refined mesh in terms of wall units, y~+. This loss of resolution induces a poor damping of the dynamic constant, which is no longer able to adjust itself to ensure the expected y3-behavior near the wall. It is shown that the dynamic constant is never small enough to properly balance the large values of the squared magnitude of the strain-rate tensor, 2S_(ij)S_(ij). The experimental database is made available to the community upon request to the authors.
机译:在复杂几何形状和工业应用(例如活塞发动机,燃气轮机或飞机发动机)中的大涡模拟(LES)要求使用先进的亚网格规模(SGS)模型,该模型应考虑主流特征和湍流各向异性。牢记这一目标,本文报道了LES专用实验,该实验是在存在冷湍流的情况下,脉冲热喷流撞击平板的实验。与常用的学术测试用例不同,此配置涉及复杂配置中遇到的不同流动特征:剪切/旋转区域,停滞点,壁湍流以及涡流环沿壁的传播。设计该实验的目的还在于使用定量和非侵入式光学诊断(例如“粒子图像测速”),并轻松执行涉及相对简单的几何形状和边界条件得到良好控制的LES。因此,研究了两个基于涡流粘度的SGS模型:动态Smagorinsky模型[M. Germano,U。Piomelli,P。Moin和W. Cabot,“动态亚网格规模的涡流粘度模型”,Phys。流体A 3(7),1760-1765(1991)]和σ模型[F. Nicoud,H。B. Toda,O。Cabrit,S。Bose和J. Lee,“使用奇异值建立用于大型涡流模拟的亚网格规模模型”,Phys。流体23(8),085106(2011)]。在实验的第一阶段,两个模型都给出相似的结果。然而,发现动态Smagorinsky模型不能准确预测涡环传播,而σ模型与实验测量结果具有更好的一致性。除了动态程序的实现(此处以最简单的形式实现,即不求同构方向的平均且不对负值进行裁剪以确保数值稳定性)之外,建议对动态Smagorinsky模型进行简化的预测是由于动态常数,很大程度上取决于网格分辨率。实际上,在涡流环撞击期间,壁附近的剪切应力增加,导致壁单元y〜+的网格细化程度降低。这种分辨率的损失会引起动态常数的衰减,从而无法再进行自我调整以确保壁附近的预期y3行为。结果表明,动态常数永远不会太小,不足以适当平衡应变率张量2S_(ij)S_(ij)的平方值的大值。根据作者的要求,可向社区提供实验数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号