首页> 外文期刊>Physics of fluids >The stability of a homogeneous suspension of chemotactic bacteria
【24h】

The stability of a homogeneous suspension of chemotactic bacteria

机译:趋化细菌均匀悬浮液的稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

The linear stability of a homogeneous dilute suspension of chemotactic bacteria in a constant chemoattractant gradient is analyzed. The bacteria execute a run-and-tumble motion, typified by the species E. coli, wherein periods of smooth swimming (runs) are interrupted by abrupt uncorrelated changes in swimming direction (tumbles). Bacteria tumble less frequently when swimming toward regions of higher chemoattractant concentration, leading to a mean bacterial orientation and velocity in the base state. The stability of an unbounded suspension, both with and without a chemoattractant, is controlled by coupled long wavelength perturbations of the fluid velocity and bacterial orientation fields. In the former case, the most unstable perturbations have their wave vector oriented along the chemoattractant gradient. Chemotaxis reduces the critical bacteria concentration, for the onset of collective swimming, compared with that predicted by Subramanian and Koch ["Critical bacterial concentration for the onset of collective swimming," J. Fluid Mech.632, 359 (2009)] in the absence of a chemoattractant. A part of this decrease may be attributed to the increase in the mean tumbling time in the presence of a chemoattractant gradient. A second destabilizing influence comes from the ability of the shearing motion, associated with a velocity perturbation in which the velocity and chemical gradients are aligned, to sweep prealigned bacteria into the local extensional quadrant thereby creating a stronger destabilizing active stress than in an initially isotropic suspension. The chemoattractant gradient also fundamentally alters the unstable spectrum for any finite wavenumber. In suspensions of bacteria that do not tumble, Saintillan and Shelley ["Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations," Phys. Rev. Lett.100, 178103 (2008); "Instabilities, pattern formation and mixing in active suspensions," Phys. Fluids20, 123304 (2008)] showed that the growth rate has two real solutions (stationary modes) below a critical wavenumber at which the two solutions merge and then bifurcate to form a pair of complex conjugate solutions (propagating modes) for larger wavenumbers. The discrete spectrum terminates at a second critical wavenumber, and beyond this wavenumber, the only remaining solutions are neutrally stable waves comprising the continuous spectrum. In the presence of a chemoattractant gradient, however, the aforementioned perfect bifurcation is broken and a pair of traveling wave solutions is found for all wavenumbers. Furthermore, instead of terminating at a critical wavenumber, the solutions for the growth rate asymptote to the negative of the tumbling frequency at large wavenumbers.
机译:分析了趋化细菌在恒定趋化因子梯度中的均质稀悬浮液的线性稳定性。细菌执行以大肠埃希氏菌为代表的奔跑运动,其中畅游的时间(奔跑)被突然不相关的游泳方向变化(奔倒)打断。向趋化剂浓度较高的区域游泳时,细菌的翻滚频率降低,从而导致基本状态下的平均细菌方向和速度。不受约束的悬浮液的稳定性,无论是否有化学引诱剂,都由流体速度和细菌取向场的长波扰动共同控制。在前一种情况下,最不稳定的扰动的波矢量沿着化学引力梯度定向。与Subramanian和Koch预测的相比,趋化性降低了集体游泳发作时的临界细菌浓度[[集体游泳发作时的临界细菌浓度,J。Fluid Mech.632,359(2009)]的化学吸引力。这种减少的一部分可能归因于在存在化学引诱剂梯度的情况下平均翻转时间的增加。第二个不稳定的影响来自剪切运动的能力,该剪切运动与速度扰动相关,在该速度扰动中,速度和化学梯度对齐,将预对齐的细菌扫入局部延伸象限,从而产生比最初各向同性的悬浮液更强的去稳定活性应力。化学吸引梯度也从根本上改变了任何有限波数的不稳定光谱。在不会翻滚的细菌悬浮液中,Saintillan和Shelley [“活性颗粒悬浮液的不稳定性和图案形成:动力学理论和连续体模拟”,物理学。 Lett.100,178103(2008); “不稳定性,图案形成和活性悬浮液中的混合”,物理。 Fluids20,123304(2008)]表明,增长率在临界波数以下具有两个实际解(平稳模态),两个解在该实数解中合并,然后分叉形成大波数的一对复共轭解(传播模态)。离散频谱终止于第二个临界波数,并且超出该波数,剩下的唯一解决方案就是包含连续频谱的中性稳定波。然而,在存在化学引力梯度的情况下,前述的完美分叉被打破,并且针对所有波数发现了一对行波解。此外,代替终止于临界波数,在大波数下,增长率的解渐近于翻转频率的负数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号