...
首页> 外文期刊>Physics of fluids >On the collision rate of small particles in isotropic turbulence. II. Finite inertia case
【24h】

On the collision rate of small particles in isotropic turbulence. II. Finite inertia case

机译:关于小粒子在各向同性湍流中的碰撞速度。二。有限惯性情况

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical experiments have been performed to study the geometric collision rate of heavy particles with finite inertia. The turbulent flow was generated by direct numerical integration of the full Navier-Stokes equations. The collision kernel peaked at a particle response time between the Kolmogorov and the large-eddy turnover times, implying that both the large-scale and small-scale fluid motions contribute, although in very different manners, to the collision rate. Both numerical results for frozen turbulent fields and a stochastic theory show that the collision kernel approaches the kinetic theory of Abrahamson [Chem. Eng. Sci. 30, 1371 (1975)] only at very large tau(p)/T-e, where tau(p) is the particle response time and T-e is the flow integral time scale. Our results agree with those of Sundaram and Collins [J. Fluid Mech. 335, 75 (1997)] for an evolving flow. A rapid increase of the collision kernel with the particle response time was observed for small tau(p)/tau(k), where tau(k) is the flow Kolmogorov time scale. A small inertia of tau(p)/tau(k) = 0.5 can lead to an order of magnitude increase in the collision kernel relative to the zero-inertia particles. A scaling law for the collision kernel at small tau(p)/tau(k) was proposed and confirmed numerically by varying the particle size, inertial response time, and Bow Reynolds number. A leading-order theory for small tau(p)/tau(k) was developed, showing that the enhanced collision is mainly a result of the nonuniform particle concentration that results from the interaction of heavy particles with local flow microstructures. (C) 1998 American Institute of Physics. [References: 21]
机译:已经进行了数值实验以研究具有有限惯性的重粒子的几何碰撞率。湍流是通过完整的Navier-Stokes方程的直接数值积分生成的。碰撞核在Kolmogorov和大涡流转换时间之间的粒子响应时间达到峰值,这意味着,尽管流体运动的方式非常不同,但大型和小型流体运动都对碰撞速率有贡献。冻结湍流场的数值结果和随机理论都表明,碰撞核接近于Abrahamson的动力学理论。 。科学30,1371(1975)]仅在非常大的tau(p)/ T-e时,其中tau(p)是粒子响应时间,T-e是流积分时标。我们的结果与Sundaram和Collins的结果一致。流体机械。 335,75(1997)]。对于小tau(p)/ tau(k),观察到碰撞核随颗粒响应时间的快速增加,其中tau(k)是流动Kolmogorov时间尺度。 tau(p)/ tau(k)= 0.5的较小惯性会导致碰撞核相对于零惯性粒子增加一个数量级。提出了小tau(p)/ tau(k)时碰撞核的定标定律,并通过改变粒径,惯性响应时间和Bow Reynolds数进行了数值验证。提出了小tau(p)/ tau(k)的前导理论,表明增强的碰撞主要是由于重颗粒与局部流动微观结构相互作用而产生的颗粒浓度不均匀所致。 (C)1998美国物理研究所。 [参考:21]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号