首页> 外文学位 >Dispersion of finite size droplets and solid particles in isotropic turbulence.
【24h】

Dispersion of finite size droplets and solid particles in isotropic turbulence.

机译:在各向同性湍流中散布有限尺寸的液滴和固体颗粒。

获取原文
获取原文并翻译 | 示例

摘要

Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e. dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel droplets in the combustion chamber of internal combustion engines. However, the physics of the interaction between a dispersed phase and turbulence is not yet fully understood. The objective of this study is to compare the dispersion of deformable finite size droplets with that of solid particles in a turbulent flow in the absence of gravity, by performing Direct Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the order of the Taylor's microscale of turbulence, and the same density ratio to the carrier flow. The solid particle-laden turbulence is simulated by coupling a standard projection method with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space and time without considering particle/particle collisions (two-way coupling). The liquid droplet-laden turbulence is simulated by coupling a variable-density projection method with the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are allowed (four-way coupling). The results presented here show that in isotropic turbulence the dispersion of liquid droplets in a given direction is larger than that of solid particles due to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of the droplets.
机译:流体/流体类型或流体/固体类型的湍流分散两相流在自然现象和工程设备中很常见。值得注意的例子是大气云,即在复杂的湍流中分散的液态水滴和冰粒,以及在内燃机的燃烧室中喷洒燃料液滴。但是,尚未完全理解分散相和湍流之间相互作用的物理原理。这项研究的目的是通过执行直接数值模拟(DNS),比较在没有重力的情况下可变形的有限尺寸液滴的散布与湍流中固体颗粒的散布。液滴和颗粒的直径相同,约为泰勒湍流的微尺度,并且与载流的密度比相同。通过将标准投影方法与“浸入边界方法”(IBM)耦合,可以模拟带有固体颗粒的湍流。固体粒子在空间和时间上完全解析,而无需考虑粒子/粒子碰撞(双向耦合)。通过将可变密度投影方法与精确守恒水平设定方法(ACLSM)耦合,可以模拟载有液滴的湍流。为了避免任何数值拖影,使用了Ghost流体法(GFM)来解决表面张力的影响,而Navier-Stokes方程的粘性项中的不连续性则通过Continuum Surface Force方法进行了平滑处理。允许液滴/液滴相互作用(四向耦合)。此处给出的结果表明,在各向同性湍流中,由于通过液滴的四向耦合作用降低了湍流动能的衰减率,在给定方向上液滴的分散度大于固体颗粒的分散度。

著录项

  • 作者

    Rosso, Michele.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号