...
首页> 外文期刊>Physics of fluids >Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
【24h】

Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation

机译:基于次优控制理论和线性随机估计的大涡模拟墙模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The cost of large eddy simulation (LES) in the near-wall region of attached turbulent boundary layers scales as the square of the friction Reynolds number, thus limiting LES to moderate Reynolds numbers. Wall stress boundary conditions are frequently used to alleviate this resolution requirement, but commonly used models are shown to perform poorly at high Reynolds numbers even in turbulent channel flow. Techniques from optimal control theory are used to find wall stresses that yield much better results in turbulent channel flow at high Reynolds numbers than existing models even on extremely coarse grids. In this approach, a suboptimal control strategy is used in which the objective is to force the outer LES towards a desired solution by using the wall stress boundary conditions as control. The suboptimal wall stresses are not necessarily physical, rather they are whatever is necessary to overcome the numerical and modeling errors present in the near-wall region to yield the correct mean velocity profile. Furthermore, the suboptimal control strategy generates reference data for comparing and deriving new wall models. Using linear stochastic estimation it is shown that the dynamically relevant part of the suboptimal wall stresses can be predicted from the local velocity field. A wall model derived from linear stochastic estimation yields good mean flow predictions in LES of turbulent channel flow on a 32(3) uniform and for friction velocity Reynolds numbers from 640 to 20 000. (C) 2001 American Institute of Physics. [References: 32]
机译:在附着的湍流边界层的近壁区域中,大涡模拟(LES)的成本与摩擦雷诺数的平方成正比,因此将LES限制为中等雷诺数。经常使用壁应力边界条件来缓解此分辨率要求,但即使在湍流通道中,常用模型也显示出在高雷诺数下的性能较差。最佳控制理论的技术被用于寻找壁应力,即使在极其粗糙的网格上,在高雷诺数下,湍流通道中的壁应力结果也要比现有模型好得多。在这种方法中,使用了次优控制策略,其目的是通过使用壁应力边界条件作为控制将外部LES推向所需解决方案。次优的壁应力不一定是物理应力,而是克服近壁区域中存在的数值和建模误差以产生正确的平均速度分布所必需的任何应力。此外,次优控制策略会生成参考数据,用于比较和推导新的墙模型。使用线性随机估计表明,可以从局部速度场预测次优壁应力的动态相关部分。从线性随机估计得出的壁模型可以在32(3)均匀的湍流通道LES中获得良好的平均流预测,并且摩擦速度的雷诺数为640至20000。(C)2001美国物理研究所。 [参考:32]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号