...
首页> 外文期刊>Physics of fluids >Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence
【24h】

Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence

机译:各向同性湍流中流体和惯性粒子在时间上的前向和后向扩散

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we investigate both theoretically and numerically the Forward-In-Time (FIT) and Backward-In-Time (BIT) dispersion of fluid and inertial particle-pairs in isotropic turbulence. Fluid particles are known to separate faster BIT than FIT in three-dimensional turbulence, and we find that inertial particles do the same. However, we find that the irreversibility in the inertial particle dispersion is in general much stronger than that for fluid particles. For example, the ratio of the BIT to FIT mean-square separation can be up to an order of magnitude larger for the inertial particles than for the fluid particles. We also find that for both the inertial and fluid particles, the irreversibility becomes stronger as the scale of their separation decreases. Regarding the physical mechanism for the irreversibility, we argue that whereas the irreversibility of fluid particle-pair dispersion can be understood in terms of a directional bias arising from the energy transfer process in turbulence, inertial particles experience an additional source of irreversibility arising from the non-local contribution to their velocity dynamics, a contribution that vanishes in the limit St -> 0, where St is the particle Stokes number. For each given initial (final, in the BIT case) separation, r(0), there is an optimum value of St for which the dispersion irreversibility is strongest, as such particles are optimally affected by both sources of irreversibility. We derive analytical expressions for the BIT, mean-square separation of inertial particles and compare the predictions with numerical data obtained from a Re-lambda approximate to 582 (where Re-lambda is the Taylor Reynolds number) Direct Numerical Simulation (DNS) of particle-laden isotropic turbulent flow. The small-time theory, which in the dissipation range is valid for times <= max[St tau(eta), tau(eta)] (where tau(eta) is the Kolmogorov time scale), is in excellent agreement with the DNS. The theory for long-times is in good agreement with the DNS provided that St is small enough so that the inertial particle motion at long-times may be considered as a perturbation about the fluid particle motion, a condition that would in fact be satisfied for arbitrary St at sufficiently long-times in the limit Re-lambda -> infinity. (C) 2016 AIP Publishing LLC.
机译:在本文中,我们在理论上和数值上研究了各向同性湍流中流体和惯性粒子对的时间前向(FIT)和时间后向(BIT)色散。已知流体粒子在三维湍流中比FIT分离BIT更快,我们发现惯性粒子也是如此。但是,我们发现惯性粒子分散中的不可逆性通常比流体粒子中的不可逆性要强得多。例如,惯性粒子的BIT与FIT均方差之比可以比流体粒子大一个数量级。我们还发现,对于惯性粒子和流体粒子,不可逆性都随着分离程度的降低而变得更强。关于不可逆性的物理机制,我们认为,虽然可以根据湍流中能量转移过程中产生的方向性偏差来理解流体颗粒对弥散的不可逆性,但惯性颗粒会遇到由不可逆性引起的不可逆性的其他来源-局部对其速度动力学的贡献,该贡献在极限St-> 0中消失,其中St是粒子斯托克斯数。对于每个给定的初始(最终,在BIT情况下)分离r(0),都有一个St的最佳值,该值的分散不可逆性最强,因为这样的粒子受到两个不可逆源的最佳影响。我们导出BIT的解析表达式,惯性粒子的均方差,并将预测结果与从近似582的Re-lambda(其中Re-lambda是泰勒·雷诺数)获得的数值数据进行比较,直接进行粒子的数值模拟(DNS)满载各向同性的湍流。小时间理论在耗散范围内对时间<= max [St tau(eta),tau(eta)]有效(其中tau(eta)是Kolmogorov时间标度),与DNS极为一致。长时间的理论与DNS很好地一致,条件是St足够小,以至于长时间的惯性粒子运动都可以被视为对流体粒子运动的扰动,而实际上,该条件可以满足Re-lambda-> infinity极限中足够长时间的任意St。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号