...
首页> 外文期刊>Chemical engineering journal >Two-dimensional direct numerical simulation of nanoparticle precursor evolution in turbulent flames using detailed chemistry
【24h】

Two-dimensional direct numerical simulation of nanoparticle precursor evolution in turbulent flames using detailed chemistry

机译:使用详细化学方法在湍流火焰中纳米颗粒前体演化的二维直接数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Flame-based synthesis is an attractive industrial process for the large-scale generation of nanoparticles. In this aerosol process, a gasified precursor is injected into a high-temperature turbulent flame, where oxidation followed by particle nucleation and other solid phase dynamics create nanoparticles. Precursor oxidation, which ultimately leads to nucleation, is strongly influenced by the turbulent flame dynamics. Here, direct numerical simulation of a canonical homogeneous flow is used to understand the interaction between a methane/air flame and titanium tetrachloride oxidation to titania. Detailed chemical kinetics is used to describe the combustion and precursor oxidation processes. Results show that the initial precursor decomposition is heavily influenced by the gas phase temperature field. However, temperature insen-sitivity of subsequent reactions in the precursor oxidation pathway slow down conversion to the titania. Consequently, titania formation occurs at much longer time scales compared to that of hydrocarbon oxidation. Further, only a fraction of the precursor is converted to titania, and a significant amount of partially-oxidized precursor species are formed. Introducing the precursor in the oxidizer stream as opposed to the fuel stream has only a minimal impact on the oxidation dynamics. In order to understand modeling issues, the DNS results are compared with the laminar flamelet model. It is shown that the flam-elet assumption qualitatively reproduces the oxidation structure. Further, reduced oxygen concentration in the near-fiame location critically affects titania formation.
机译:基于火焰的合成是大规模产生纳米粒子的有吸引力的工业过程。在这种气溶胶工艺中,将气化的前体注入高温湍流的火焰中,在此过程中,氧化,随后的颗粒成核和其他固相动力学产生了纳米颗粒。最终导致成核的前体氧化受到湍流火焰动力学的强烈影响。在这里,使用标准均质流的直接数值模拟来了解甲烷/空气火焰与四氯化钛氧化成二氧化钛之间的相互作用。详细的化学动力学用于描述燃烧和前体氧化过程。结果表明,初始前体分解在很大程度上受气相温度场的影响。但是,前体氧化途径中后续反应的温度敏感性会减慢向二氧化钛的转化。因此,与碳氢化合物氧化相比,二氧化钛的形成在更长的时间尺度上发生。此外,仅一部分前体转化为二氧化钛,并且形成大量的部分氧化的前体物质。与燃料流相反,在氧化剂流中引入前体对氧化动力学的影响很小。为了理解建模问题,将DNS结果与层状小火焰模型进行了比较。结果表明,火焰假设定性地再现了氧化结构。此外,在近火焰位置降低的氧浓度严重影响二氧化钛的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号