首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip
【24h】

Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip

机译:在光子带隙微芯片中设计电磁真空以控制光

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate a trimodal waveguide architecture in a three-dimensional (3D) photonic-band-gap (PBG) material, in which the local electromagnetic density of states (LDOS) within and adjacent to the waveguide exhibits a forklike wavelength filter characteristic. This facilitates the control and switching of one laser beam with other laser beams ( similar to1 muW steady-state holding power and similar to5 nW switching power) through mutual coherent resonant interaction with quantum dots. Two waveguide modes provide narrow spectral windows where the electromagnetic LDOS is enhanced by a factor of 100 or more relative to the background LDOS of a third air-waveguide mode with nearly linear dispersion. This "engineered vacuum" can be used for frequency-selective, atomic population inversion and switching (by coherent resonant optical pumping) of an inhomogeneously broadened collection of "atoms" situated adjacent to the waveguide channel. The "inverted" atomic system can then be used to coherently amplify fast optical pulses propagating through the third waveguide mode. This coherent "control of light with light" occurs without recourse to microcavity resonances (involving long cavity buildup and decay times for the optical field). Our architecture facilitates steady-state coherent pumping of the atomic system (on the lower-frequency LDOS peak) to just below the gain threshold. The higher-frequency LDOS peak is chosen to coincide with the upper Mollow sideband of the same atomic resonance fluorescence spectrum. The probing laser is adjusted to the lower Mollow sideband, which couples to the linear dispersion (high group velocity part) of the third waveguide mode. This architecture enables rapid modulation (switching) of light at the lower Mollow sideband frequency through light pulses conveyed by the linear dispersion mode at frequencies corresponding to the central Mollow component (lower LDOS peak). We demonstrate that LDOS jumps of order 100 can occur on frequency scales of Deltaomega approximate to 10(-4) omega(c) (where omega(c) is the frequency of the jump) in a finite-size 3D photonic crystal (PC) consisting of only 10 X 10 X 20 unit cells. When the semiconductor backbone of the PC has a refractive index of 3.5 and omega(c) corresponds to a wavelength of 1.5 mum, this vacuum engineering may be achieved in a sample whose largest dimension is about 12 mum.
机译:我们演示了三维(3D)光子带隙(PBG)材料中的三峰波导架构,其中波导内和与波导相邻的状态的局部电磁密度(LDOS)表现出叉状波长滤波器的特性。通过与量子点的相互相干共振相互作用,这有助于一个激光束与其他激光束(类似于1兆瓦的稳态保持功率和类似于5毫瓦的开关功率)的控制和切换。两种波导模式提供了较窄的光谱窗口,其中电磁LDOS相对于具有近似线性色散的第三种空气波导模式的背景LDOS增强了100倍或更多。这种“工程真空”可用于频率选择,原子总数反转和切换(通过相干共振光学泵浦)(位于相干波导附近)不均匀加宽的“原子”集合。然后可以使用“倒置”原子系统来相干地放大通过第三波导模式传播的快速光脉冲。这种连贯的“用光控制光”的发生不依赖于微腔共振(涉及长的腔累积和光场的衰减时间)。我们的体系结构有助于原子系统的稳态相干泵浦(在低频LDOS峰值上)达到增益阈值以下。选择较高频率的LDOS峰,使其与相同原子共振荧光光谱的较高Mollow边带重合。探测激光器调整到较低的Mollow边带,该边带耦合到第三波导模式的线性色散(高群速度部分)。这种结构能够通过线性色散模式在对应于中心Mollow分量(较低的LDOS峰值)的频率处通过线性色散模式传送的光脉冲,以较低的Mollow边带频率快速调制(切换)光。我们证明,在有限尺寸的3D光子晶体(PC)中,大约在10(-4)omega(c)(其中omega(c)是跳跃的频率)的Deltaomega频率尺度上,会发生100级的LDOS跳跃。仅由10 X 10 X 20个单位单元组成。当PC的半导体主干的折射率为3.5且omega(c)对应于1.5微米的波长时,可以在最大尺寸约为12微米的样品中实现这种真空工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号