...
首页> 外文期刊>Chemical engineering journal >Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler-Volmer reactions
【24h】

Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler-Volmer reactions

机译:通过计算流体动力学与多级Butler-Volmer反应耦合研究管状微生物燃料电池中的多物理场

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial fuel cells (MFCs) are considered as an emerging concept for sustainable wastewater treatment with energy recovery. The anode of an MFC plays a key role in conversion of organic compounds to electricity, and thus understanding the multiphysics within the anodic compartment will be helpful with MFC optimization and scaling-up. In this study, a multi-order Butler-Volmer reaction model was proposed to compute organic consumption and energy recovery. Computational fluid dynamics (CFD) was applied to analyze the hydrodynamics and species transport inside the anodic compartment. By comparing to the experimental data, the reaction order of anodic surface reaction was determined as 6.4. The reaction model gave good agreement with experimental data when the influent sodium acetate was 1.0, 0.5 and 0.3 g L-1 at anodic hydraulic retention time (HRT) of 10 h, indicating the effectiveness of this multi-order Butler-Volmer reaction model. When the influent sodium acetate was 0.2 g L-1 or the anodic HRT was 15 h, the model exhibited discrepancies in predicting current generation and effluent chemical oxygen demand (COD) concentration, likely due to the interference of the decayed biomass and the activities of non-electroactive bacteria. The results of this study have demonstrated the viability of coupling CFD with a multi-order reaction model to understand the key operating factors of an MFC. (C) 2016 Elsevier B.V. All rights reserved.
机译:微生物燃料电池(MFCs)被认为是利用能量回收进行可持续废水处理的新兴概念。 MFC的阳极在将有机化合物转化为电中起关键作用,因此了解阳极室中的多物理场将有助于MFC优化和放大。在这项研究中,提出了一个多阶Butler-Volmer反应模型来计算有机物消耗和能量回收。计算流体动力学(CFD)用于分析阳极室内的流体动力学和物质传输。通过与实验数据的比较,确定了阳极表面反应的反应顺序为6.4。当进水乙酸钠在10 h的阳极水力停留时间(HRT)为1.0、0.5和0.3 g L-1时,反应模型与实验数据吻合良好,表明该多级Butler-Volmer反应模型的有效性。当进水乙酸钠为0.2 g L-1或阳极HRT为15 h时,该模型在预测电流产生和废水中化学需氧量(COD)浓度方面显示出差异,这可能是由于降解的生物量和活性的影响。非电活性细菌。这项研究的结果证明了将CFD与多级反应模型耦合以了解MFC关键操作因素的可行性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号