首页> 外文期刊>Physiologia plantarum >Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes
【24h】

Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes

机译:外部铵盐浓度增加导致的C / N平衡变化受豌豆植物铵盐营养过程中碳和能量利用率的驱动:天冬酰胺合成酶和抗腐酶的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

An understanding of the mechanisms underlying ammonium (NH4+) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH4+ concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4+ levels and the cell-charge balance associated with cation uptake. Herein we show a role for an extra-C application in the regulation of C-N metabolism in NH4+-fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH4+ concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH4+ concentration triggered a toxicity response with the characteristic pattern of C-starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH4+ concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C-starvation symptoms by providing higher C availability to the plants. The extra-C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH4+ nutrition in plants.
机译:要了解植物中铵(NH4 +)毒性的潜在机制,需要先了解氮(N)和碳(C)的代谢用途。我们最近发现,以高NH4 +浓度生长的豌豆植株会遭受能量亏缺,这与离子动态平衡的破坏有关。此外,这些植物无法充分调节内部NH4 +水平以及与阳离子吸收有关的细胞电荷平衡。在本文中,我们显示了额外的C应用在调节NH4 +喂养的植物中C-N代谢中的作用。因此,豌豆植物(Pisum sativum)在一定范围的NH4 +浓度下生长,作为唯一的氮源,并施加了两种光照强度以改变对植物的碳供应。在高NH4 +浓度下生长的对照植物以C饥饿条件的特征模式引发了毒性反应。这种毒性反应导致N从氨基酸(主要是天冬酰胺)中重新分布,并降低了C / N比。在控制条件下,高NH4 +浓度下的C / N不平衡诱导了根C代谢的强烈活化和抗过氧化物酶的上调,从而为三羧酸循环提供了C中间体。高光强度通过为植物提供更高的碳利用率而部分缓解了这些碳饥饿症状。 Extra-C有助于降低C4 / C5氨基酸比率,同时保持了参与调节植物C / N状态关键途径的一些次要氨基酸的相对含量。因此,可利用的碳被认为是植物对NH4 +营养的耐受性/敏感性机制的决定性因素。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号