首页> 外文期刊>Journal of Plant Physiology >Response to nitrate/ammonium nutrition of tomato (Solarium lycopersicum L.) plants overexpressing a prokaryotic NH_4~+-dependent asparagine synthetase
【24h】

Response to nitrate/ammonium nutrition of tomato (Solarium lycopersicum L.) plants overexpressing a prokaryotic NH_4~+-dependent asparagine synthetase

机译:过度表达原核NH_4〜+依赖性天冬酰胺合成酶的番茄(Solarium lycopersicum L.)植物对硝酸盐/铵营养的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrogen availability is an important limiting factor for plant growth. Although NH_4~+ assimilation is energetically more favorable than NO_3~-, it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solarium lycopersicum L. cv P-73) plants were transformed with an NH_4~+-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Horn), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO_3~-/NH_4~+ = 6/0.5) and high ammonium nutrition (NO_3~-/NH_4~+ = 3.5/3). Under Hoagland's conditions, Horn plants produced 40-50% less biomass than WT and Az plants. However, under NO_3~-/NH_4~+ = 3.5/3 the biomass of Horn was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Horn plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH_4~+ and NO_3~-levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Horn plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO_3~-/NH_4~+ = 3.5/3, respectively.
机译:氮的供应是植物生长的重要限制因素。尽管NH_4〜+的同化作用比NO_3〜-在能量上更有利,但通常对植物有毒。为了研究改善的氨同化代谢是否可以提高植物对铵营养的耐受性,将番茄(Solarium lycopersicum L. cv P-73)植物转化为大肠杆菌的NH_4〜+依赖性天冬酰胺合成酶(AS-A)基因在PCpea启动子(豌豆分离的组成型启动子)控制下的大肠杆菌(asnA)。纯合子(Horn),纯合子(Az)asnA和野生型(WT)植物在正常Hoagland营养(NO_3〜-/ NH_4〜+ = 6 / 0.5)和高铵营养(NO_3〜-/ NH_4)下水培生长6周。 〜+ = 3.5 / 3)。在Hoagland的条件下,霍恩植物的生物量比野生型和Az植物少40-50%。然而,在NO_3〜-/ NH_4〜+ = 3.5 / 3的条件下,与Hoagland相比,WT和Az植物中Horn的生物量没有受到影响,而减少了40-70%。霍恩植物的光适应性叶片中天冬酰胺,甘氨酸,丝氨酸和可溶性蛋白质的积累量是其他基因型的1.5-4倍,并具有更高的谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)活性,但NH_4〜+和在所有条件下为NO_3〜级。在黑暗适应的叶片中,Horn植物发生了蛋白质分解代谢,有机酸浓度随之增加了25-40%,而天冬酰胺的累积量最高。就转基因蛋白质合成和分解代谢的无效循环而言,前述过程可能导致积极的能量平衡。这解释了标准营养下的生长损失和NO_3〜-/ NH_4〜+ = 3.5 / 3下的生长稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号