首页> 外文期刊>Water Research >Modelling coupled turbulence - Dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell
【24h】

Modelling coupled turbulence - Dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell

机译:耦合湍流建模-风浪和海浪作用下沉积物-水界面附近的溶解氧动力学

获取原文
获取原文并翻译 | 示例
       

摘要

A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30 s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model.rnThe flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (μ). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh < 0.05, VAR(Sh) < 0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh ≈ 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30 s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (≤1 mm for μ = 2000 g m~(-3) d~(-1)) and decrease when the flow period increases. In the turbulent regime, the oxygen penetration depth reaches values up to five times larger than those in the laminar regime, becoming asymptotic as the maximum shear velocity increases.
机译:建立了一维垂直非定常数值模型,用于研究沉积物-水界面上下的溶解氧的扩散-消耗量,以研究风浪和海浪(周期为2的高频振荡流)下的溶解氧分布动力学。至30 s)。我们测试了一种模拟DO剖面的新方法,该方法将振荡湍流底部边界层模型与基于Michaelis-Menten的消耗模型相结合.rn流动状态既控制平均值,又控制波动周期内氧气传质效率的波动,如下用最大剪切速度(Sh)定义的无维舍伍德数表示。发现舍伍德数与沉积物的生物地球化学活性(μ)无关。在层流状态下,周期平均数和舍伍德数的方差都非常低(Sh <0.05,VAR(Sh)<0.1%)。在湍流状态下,周期平均舍伍德数较大(Sh≈0.2)。舍伍德数还具有随波雷诺数增加的波内周期波动(VAR(Sh)高达30%)。我们的计算表明,湍流状态下高频振荡流下的DO传质效率受水侧控制:(a)跨扩散边界层的扩散时间和(b)波动周期内的扩散边界层动力学。作为这两个过程的结果,当波动周期减小时,Sh最小值增大,而Sh最大值减小。 Sh值变化很小,范围从0.17到0.23。在长达30 s的时间内,氧气向沉积物中的渗透深度未显示任何波内波动。层流状态的值很小(对于μ= 2000 g m〜(-3)d〜(-1),≤1 mm),并且随着流动时间的增加而减小。在湍流状态下,氧气渗透深度达到的值比层流状态下的氧气渗透深度大五倍,并随着最大剪切速度的增加而渐近。

著录项

  • 来源
    《Water Research》 |2010年第5期|P.1361-1372|共12页
  • 作者单位

    CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651 Banyuls/mer, France UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651 Banyuls/mer, France;

    rnCNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651 Banyuls/mer, France UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651 Banyuls/mer, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    wave boundary layer; mass transfer; turbulent diffusion; unsteady flow; sediment diagenesis;

    机译:波边界层传质湍流扩散不稳定流量沉积物成岩作用;
  • 入库时间 2022-08-17 13:49:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号