首页> 外文学位 >Dynamics and control of nutrient, metal and oxygen fluxes at the profundal sediment-water interface of lakes and reservoirs.
【24h】

Dynamics and control of nutrient, metal and oxygen fluxes at the profundal sediment-water interface of lakes and reservoirs.

机译:湖泊和水库深层沉积物-水界面的养分,金属和氧气通量的动力学和控制。

获取原文
获取原文并翻译 | 示例

摘要

Deep, productive lakes commonly exhibit summertime hypolimnetic anoxia, resulting in a flux of problem-causing compounds from profundal sediment to overlaying water. Using experimental 1.8 L chambers, I examined nutrient, metal and DO flux dynamics at the sediment-water interface, and evaluated hypolimnetic oxygenation as a potential control strategy. Study sites included six municipal water supply reservoirs and two natural lakes of varying size and trophic status. Anoxic release rates of soluble reactive phosphorus (SRP) and ammonia from anoxic sediments ranged from 0.25–9 mgP m−2 d−1 and 0.5–14 mg-N m−2 d−1, and P and N release rates covaried across study sites (r2 = 0,78, p 0.001). Anoxic nutrient flux also strongly correlated with sediment Fe:Mn ratio (r2 = 0.92, p 0.001). SRP release rate correlated with sediment total phosphorus (TP) (r2 = 0.48, p 0.05), but did not correlate with the ORP-sensitive fraction of sediment TP. Anoxic release of iron and manganese ranged from 0.25–28 and 1–12 mg m−2 d−1 , respectively. Low rates of iron release were observed in sulfide-rich chambers, suggesting the formation of iron sulfides. Under oxic conditions, SRP and metal releases were almost completely inhibited, while ammonia release was inhibited only in sediments from lakes of low to moderate trophic status. Observed patterns of SRP release support the Einsele-Mortimer model of sediment P release. The source of ammonia release under anoxic conditions appears to be a loss of heterotrophic assimilation potential. Sediment oxygen demand (SOD) measured under quiescent conditions ranged from 0.05–0.4 g m −2 d−1. Moderate mixing at the sediment-water interface (velocities of 4–5 cm s−1) consistently increased SOD by a factor of three to four. The SOD component of total hypolimnetic oxygen demand in study sites significantly increased with decreasing mean depth (r2 = 0.81, p 0.05). Nutrient release rates and SOD were found to significantly correlate with a Trophic Index developed for the study sites (r2 > 0.75, p 0.02) based on a principal component analysis of chlorophyll-a, secchi depth and anoxic factor. Calculated rates of in situ nutrient release and SOD were in general agreement with rates determined experimentally. Hypolimnetic oxygenation, an emerging lake management technology, shows promise in reducing undesired chemical fluxes from sediments. However, design oxygen capacity must be carefully assessed since mixing after system startup can increase hypolimnetic oxygen demand, particularly in stratified lakes of moderate depth.
机译:生产力较高的深水湖泊通常会在夏季出现低铁性缺氧,导致导致问题的化合物从深部沉积物流到水面。我使用实验性的1.8 L腔室,检查了沉积物-水界面的养分,金属和溶解氧通量动态,并评估了低铁氧合作为一种潜在的控制策略。研究地点包括六个市政供水水库和两个大小和营养状况不同的天然湖泊。缺氧沉积物中可溶性反应性磷和氨的缺氧释放速率为0.25–9 mgP m −2 d -1 和0.5–14 mg-N m < super> -2 d -1 ,P和N的释放速率在各个研究地点之间存在协变量(r 2 = 0,78,p <0.001)。缺氧养分通量也与沉积物的Fe:Mn比密切相关(r 2 = 0.92,p <0.001)。 SRP释放速率与沉积物总磷(TP)相关(r 2 = 0.48,p <0.05),但与沉积物TP的ORP敏感分数无关。铁和锰的缺氧释放范围分别为0.25–28和1–12 mg m −2 d −1 。在富含硫化物的腔室中观察到铁释放率低,表明形成了硫化铁。在有氧条件下,SRP和金属的释放几乎被完全抑制,而氨的释放仅在营养水平低至中等的湖泊的沉积物中被抑制。观察到的SRP释放模式支持沉积物P释放的Einsele-Mortimer模型。在缺氧条件下释放的氨的来源似乎是异养同化潜力的损失。静态条件下测得的沉积物需氧量(SOD)为0.05–0.4 g m -2 d -1 。沉积物-水界面的适度混合(速度为4-5 cm s -1 )始终使SOD升高三到四倍。随着平均深度的降低,研究地点总低氧需求的SOD分量显着增加(r 2 = 0.81,p <0.05)。根据叶绿素-<斜体> a <的主成分分析,发现营养释放速率和SOD与研究地点的营养指数显着相关(r 2 ,secchi深度和缺氧因子。原位养分释放和SOD的计算速率与实验确定的速率基本一致。催眠加氧是一种新兴的湖泊管理技术,有望减少沉积物中不希望的化学通量。但是,必须仔细评估设计的氧气容量,因为在系统启动后进行混合会增加低速氧气的需求量,尤其是在中等深度的分层湖泊中。

著录项

  • 作者

    Beutel, Marc Watson.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Environmental.; Biology Limnology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号