首页> 外文期刊>Water Research >Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon
【24h】

Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon

机译:通过氯化除去水中的碘化物,然后吸附在粉末状活性炭上

获取原文
获取原文并翻译 | 示例
       

摘要

Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br-), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl-2/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbon concentration, 1.5 mg-C/L). Iodine removal in NOM-containing water increased with increasing chlorine dose up to >0.1 mg-Cl-2/L but decreased at chlorine doses of >1.0 mg-Cl-2/L. At a low chlorine dose, nonadsorbable iodide ion (I-) was oxidized to adsorbable hypoiodous acid (HOI). When the chlorine dose was increased, some of the HOI reacted with NOM to form adsorbable organic iodine (organic-I). Increasing the chlorine dose further did not enhance iodine removal, owing to the formation of nonadsorbable iodate ion (IO3-). Co-existing Br- depressed iodine removal, particularly in NOM-free water, because hypobromous acid (HOBr) formed and catalyzed the oxidation of HOI to However, the effect of Br- was small in the NOM-containing water because organic-I formed instead of SPAC (median particle diameter, 0.62 gm) had a higher equilibrium adsorption capacity for organic-I than did conventional PAC (median diameter, 18.9 mu m), but the capacities of PAC and SPAC for HOI were similar. The reason for the higher equilibrium adsorption capacity for organic-I was that organic-I was adsorbed principally on the exterior of the PAC particles and not inside the PAC particles, as indicated by direct visualization of the solid-phase iodine concentration profiles in PAC particles by field emission electron probe microanalysis. In contrast, HOI was adsorbed evenly throughout the entire PAC particle. (C) 2014 Elsevier Ltd. All rights reserved.
机译:研究了氯氧化后用活性炭处理作为从水中去除放射性碘的可能方法。氯化时间,氯剂量,天然有机物(NOM)的存在,溴离子(Br-)的存在以及碳的粒径都会严重影响碘的去除。在用氯(1 mg-Cl-2 / L)氧化10分钟后,用超细粉状活性炭(SPAC)处理去除了含NOM的水中90%的碘(溶解的有机碳浓度为1.5 mg-C / L) 。含NOM的水中的碘去除率随着氯剂量的增加而增加,直至> 0.1 mg-Cl-2 / L,但当氯剂量> 1.0 mg-Cl-2 / L时,碘的去除率降低。在低氯剂量下,不可吸收的碘离子(I-)被氧化为可吸收的次碘酸(HOI)。当氯的剂量增加时,一些HOI与NOM反应形成可吸附的有机碘(有机I)。由于形成了不可吸收的碘酸根离子(IO3-),进一步增加氯的剂量并不能提高碘的去除率。共存的Br-抑制了碘的去除,特别是在不含NOM的水中,因为形成了次溴酸(HOBr)并催化了HOI的氧化,但是,由于形成了有机I,Br-在含NOM的水中的作用很小。代替SPAC(中值粒径为0.62 gm)对有机I的平衡吸附容量要比常规PAC(中值直径为18.9μm)高,但PAC和SPAC的HOI容量相似。通过直接观察PAC颗粒中固相碘浓度分布图可以看出,有机物I的平衡吸附容量较高的原因是,有机物I主要吸附在PAC颗粒的外部,而不是在PAC颗粒的内部。通过场发射电子探针显微分析。相反,HOI被整个PAC颗粒均匀吸附。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2015年第1期|227-237|共11页
  • 作者单位

    Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan;

    Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan;

    Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan;

    Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan;

    Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iodide; Iodate; SPAC; PAC; NOM;

    机译:碘化物;碘化物;SPAC;PAC;NAME;
  • 入库时间 2022-08-17 13:43:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号