首页> 外文期刊>Water, Air, and Soil Pollution >DEHALOGENATION OF 2-CHLORONAPTHALENE BY CAST IRON
【24h】

DEHALOGENATION OF 2-CHLORONAPTHALENE BY CAST IRON

机译:铸铁对2-氯萘的脱盐

获取原文
获取原文并翻译 | 示例
       

摘要

Aqueous 2-chloronapthalene was contacted with cast iron in batch systems, resulting in an initial rapid increase in the sorbed 2-chloronapthalene concentration (C_s) followed by a slow decline, and an initial rapid decline in the aqueous 2-chloronapthalene concentration (C_a) followed by a slower decline. The initial rapid partitioning of 2-chloronapthalene to the solid phase was due to its adsorption on elemental carbon present on the cast iron surface, while the residual aqueous phase 2-chloronapthalene underwent reductive dehalogenation at a slower rate through interaction with the metallic iron surface. The overall rate of change of total 2-chloronapthalene concentration (C_T = C_s + C_a) with time, i.e., ((dC_T)/(dt))could be described by the expression, -k_1 · M · (C_a)~n, where Mis the concentration of cast iron. The values of k_1 and n were determined to be 1.576 x 10~(-5) hr~(-1) g~(-1) iron L and 1.945 respectively. Equilibrium partitioning of 2-chloronapthalene between solid and aqueous phases could be described by a Freundlich isotherm, C_s = K · [C_a]~m, where m and K were determined to be 0.55 and 4.92 x 10~(-3) Lg~(-1). Considering K to be the ratio of the adsorption (k_2) and desorption (k_3) rate constants, expressions were developed for describing the evolution of C_s and C_a with time. Putting k_3 = 1 hr~(-1) in these expressions resulted in adequate model fit to the experimental data. Napthalene was identified as the major dehalogenation by-product, with greater than 99 percent of the naphthalene produced partitioning to carbon present on the cast iron surface. No competition between 2-chloronapthalene and naphthalene for adsorption on the carbon surface was observed, suggesting non-specific adsorption of these compounds restricted only by the physical size of the molecules and the available carbon surface area.
机译:在分批系统中将2-氯萘水溶液与铸铁接触,导致吸附的2-氯萘浓度(C_s)最初迅速增加,随后缓慢下降,而2-氯萘水溶液(C_a)最初快速下降其次是下降速度较慢。 2-氯萘最初快速分配到固相是由于其吸附在铸铁表面上存在的元素碳上,而残留的水相2-氯萘通过与金属铁表面的相互作用以较慢的速率进行了还原脱卤。 2-氯萘总浓度的总变化率(C_T = C_s + C_a)随时间变化,即((dC_T)/(dt))可以用表达式-k_1·M·(C_a)〜n表示,哪里铸铁的浓度。 k_1和n的值分别确定为1.576 x 10〜(-5)hr〜(-1)g〜(-1)铁L和1.945。固相和水相之间2-氯萘的平衡分配可以用弗氏等温线描述,C_s = K·[C_a]〜m,其中m和K被确定为0.55和4.92 x 10〜(-3)Lg〜( -1)。考虑到K是吸附速率常数(k_2)与解吸速率常数(k_3)的比率,开发了用于描述C_s和C_a随时间变化的表达式。将k_3 = 1 hr〜(-1)放在这些表达式中可以使模型与实验数据充分拟合。萘被确定为主要的脱卤副产物,其中超过99%的萘产生的产物分配给铸铁表面的碳。没有观察到2-氯萘和萘在碳表面上吸附的竞争,这表明这些化合物的非特异性吸附仅受分子的物理尺寸和可用碳表面积的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号