首页> 外文期刊>Water, Air, and Soil Pollution >Hydrodynamic Conditions Influence Bacterial Growth and Phenol Biodegradation of Strains with Different Morphology and Motility
【24h】

Hydrodynamic Conditions Influence Bacterial Growth and Phenol Biodegradation of Strains with Different Morphology and Motility

机译:流体动力学条件影响不同形态和运动力菌株的细菌生长和苯酚的生物降解

获取原文
获取原文并翻译 | 示例
       

摘要

Microorganisms are frequently exposed to flowing fluid, thus to investigate bacterial characteristics under different hydrodynamic conditions is of great importance in microbial ecology. This study characterized bacterial growth and phenol biodegradation of three strains, i.e., Microbacterium oxydans (rod-shaped, nonmotile), Alcaligenes faecalis (rod-shaped, motile), and Staphylococcus haemolyticus (spherical, non-motile) in shake-flask cultures at various rotating speeds. For all the strains, a higher rotating speed always resulted in a shorter lag phase, indicating that the strains showed a superior adaptability under higher hydrodynamic conditions. The maximum specific growth rate of M. oxydans, A. faecalis, and S. haemolyticus increased rapidly with the increase of energy dissipation rate till the highest value of 0.386, 0.240, and 0.323 l/h and then decreased as the rotating speed further increased. The phenol biodegradation rate was also dependent on rotating speed, and the trends were consistent with the growth rate variations. A predictive model similar to Haldane model was proposed and was fitted well (R-2 0.913) with bacterial growth under different hydrodynamic conditions. According to the predictive model, the optimum hydrodynamic conditions for the growth of M. oxydans, A. faecalis, and S. haemolyticus were 3.099, 2.197, and 2.289 m(2)/s(3), respectively. The results suggested that non-motile and rod-shaped bacteria were more dependent on hydrodynamic conditions than motile and spherical ones, which could be attributed to the discrepancies in bacterial morphology and motility. The results provide a better understanding on bacterial responses to various hydrodynamic conditions and could be further applied in the bioremediation of contaminated water.
机译:微生物经常暴露于流动的流体中,因此研究不同流体动力学条件下的细菌特性对微生物生态学至关重要。这项研究的特点是在摇瓶培养中,三种菌株,即氧化微细菌(杆状,不运动),粪便产碱杆菌(杆状,运动)和溶血性葡萄球菌(球形,不运动)三种菌株的细菌生长和苯酚生物降解。各种转速。对于所有菌株,较高的旋转速度总是导致较短的滞后阶段,这表明菌株在较高的流体动力条件下显示出优异的适应性。随着能量耗散率的增加,氧化单胞菌,粪屎曲霉和溶血链球菌的最大比生长速率迅速增加,直到最高值分别为0.386、0.240和0.323 l / h,然后随着转速的增加而降低。 。苯酚的生物降解率也取决于转速,其趋势与生长速率的变化一致。提出了一种类似于Haldane模型的预测模型,该模型非常适合(R-2> 0.913),并且在不同流体动力学条件下细菌都能生长。根据预测模型,最佳的水力条件为oxy。M. oxydans,A. faecalis和溶血链球菌的生长分别为3.099,2.197和2.289 m(2)/ s(3)。结果表明,非活动性和杆状细菌比活动性和球形细菌更依赖流体动力学条件,这可能归因于细菌形态和运动性的差异。结果为细菌对各种流体动力学条件的响应提供了更好的理解,并可以进一步应用于污染水的生物修复。

著录项

  • 来源
    《Water, Air, and Soil Pollution》 |2018年第3期|93.1-93.10|共10页
  • 作者单位

    Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrodynamic conditions; Bacterial growth; Model; Morphology; Motility;

    机译:流体力学条件;细菌生长;模型;形态学;运动性;
  • 入库时间 2022-08-17 13:36:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号