首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Optimizing FPGA Logic Block Architectures for Arithmetic
【24h】

Optimizing FPGA Logic Block Architectures for Arithmetic

机译:优化算术的FPGA逻辑块体系结构

获取原文
获取原文并翻译 | 示例
           

摘要

Hardened adder and carry logic is widely used in commercial field-programmable gate arrays (FPGAs) to improve the efficiency of arithmetic functions. There are many design choices and complexities associated with such hardening, including circuit design, FPGA architectural choices, and the computer-aided design (CAD) flow. However, these choices have not been studied much and hence we explore a number of possibilities. We also highlight front-end elaboration optimization that helps ameliorate the restrictions placed on logic synthesis by hardened arithmetic. We show that hard adders and carry chains increase the performance of simple adders by a factor of 4 or more, but on larger benchmark designs that contain arithmetic improve the overall performance by 15%. Our results also show that for complete application circuits simple hardened ripple-carry adders perform as well as more complex carry-lookahead adders. Our best non-fracturable lookup table (non-fLUT) architecture with hardened arithmetic yields 12% better area-delay product than architectures without hardened arithmetic. We also investigate the impact of fLUTs and their interaction with hardened arithmetic. We find that fLUTs offer significant (12%-15%) area reduction, which is complementary to the delay reduction of hardened arithmetic. Therefore, our best fLUT architectures which use two bits of hardened arithmetic achieve 25% better area-delay product than non-fLUT architectures without hardened arithmetic.
机译:硬化加法器和携带逻辑广泛用于商业领域可编程门阵列(FPGA)以提高算术函数的效率。有许多与这种硬化相关的设计选择和复杂性,包括电路设计,FPGA架构选择和计算机辅助设计(CAD)流。然而,这些选择尚未得到很多,因此我们探索了许多可能性。我们还突出了前端的阐述优化,有助于改善通过硬化算法对逻辑合成的限制。我们表明硬加入器和携带链将简单加入剂的性能提高了4个或更多的倍数,但在较大的基准设计上,含有算术将整体性能提高15%。我们的研究结果还表明,对于完整的应用电路,简单的硬化纹波携带加法器以及更复杂的携带保护剂。我们最好的非恒定查找表(非挡板)架构,具有硬化算术产生12%的区域延迟产品比架构更好,而没有恒定的算术。我们还研究了烟道的影响及其与硬化算术的互动。我们发现,烟道减少了很大(12%-15%)的区域,这与硬化算术的延迟减少相互补充。因此,我们最好的挡板架构,使用两位硬化算术达到25%的区域延迟产品而不是非挡板架构而没有硬化算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号