首页> 外文期刊>真空 >A DFT-based Analysis on H_2O Molecule Adsorption and Dissociation on the Rutile TiO_2 (110) and (100) Surfaces
【24h】

A DFT-based Analysis on H_2O Molecule Adsorption and Dissociation on the Rutile TiO_2 (110) and (100) Surfaces

机译:基于DFT的金红石TiO_2(110)和(100)表面上H_2O分子吸附和解离的分析

获取原文
获取原文并翻译 | 示例
           

摘要

As part of the growing number of researches that contribute to the development of photocatalysis on TiO_2 that attests to its relevance in the future of alternative energy source, we present a comparative study on H_2O molecular and dissociative adsorp­tion on rutile TiO_2 (110) — (1 × 1) and (100)-(1 × 1) surfaces using density functional theory (DFT)-based analysis. Here, we show that the H_2O molecule is more stably adsorbed molecularly on the TiO_2 (100) -(1×1) surface than on the (110) - (1×1) surface and that density of states (DOS) analysis on the system attributes this to the interacting Ti atom's higher number of states below the Fermi level for the TiO_2 (100) -(1×1) surface compared with the (110) — (1×1) surface. Furthermore, dissoci­ation, which entails formation of OH bonds on the surface, is more favorable on the TiO_2 (100) - (1×1) than that on the TiO_2 (110)-(1×1) surfaces as indicated by a smaller activation barrier on the analyzed dissociation path and a more stable dis­sociated state. These findings are relevant in considering the TiO_2 (100) surface in photocatalytic reactions which is shown to have good active sites for H_2O molecule interaction in terms of adsorption and dissociation.
机译:随着越来越多的研究对TiO_2上光催化反应的发展做出了贡献,并证明了其在替代能源的未来中的重要性,我们提供了对金红石TiO_2(110)上H_2O分子和解离吸附的比较研究(1 ×1)和(100)-(1×1)曲面使用基于密度泛函理论(DFT)的分析。在这里,我们表明H_2O分子比(110)-(1×1)表面更稳定地分子吸附在TiO_2(100)-(1×1)表面上,并且状态密度(DOS)分析系统将其归因于与(110)-(1×1)表面相比,相互作用的Ti原子在TiO_2(100)-(1×1)表面的费米能级以下具有更高的状态数。此外,离解(需要在表面上形成OH键)在TiO_2(100)-(1×1)上比在TiO_2(110)-(1×1)表面上的离解更有利,这是由较小的活化作用所表明的。解析解离路径上的势垒和更稳定的解离状态。这些发现与考虑光催化反应中的TiO_2(100)表面有关,该表面在吸附和解离方面具有良好的H_2O分子相互作用的活性位点。

著录项

  • 来源
    《真空》 |2012年第7期|p.341-348|共8页
  • 作者单位

    Department of Precision Science & Technology and Applied Physics, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Precision Science & Technology and Applied Physics, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Precision Science & Technology and Applied Physics, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    Department of Precision Science & Technology and Applied Physics, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan,Laboratory of Computational Materials Design, Research Group of Engineering Physics, Institut Teknologi Bandung, Jin. Ganesha 10,Bandung 40132, Indonesia;

    Laboratory of Computational Materials Design, Research Group of Engineering Physics, Institut Teknologi Bandung, Jin. Ganesha 10,Bandung 40132, Indonesia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号