首页> 外文期刊>Transportation research >Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations
【24h】

Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations

机译:动态图卷积的多步流量预测:实时空间相关性解释

获取原文
获取原文并翻译 | 示例
       

摘要

Accurate and explainable short-term traffic forecasting is pivotal for making trustworthy decisions in advanced traffic control and guidance systems. Recently, deep learning approach, as a data-driven alternative to traffic flow model-based data assimilation and prediction methods, has become popular in this domain. Many of these deep learning models show promising predictive performance, but inherently suffer from a lack of interpretability. This difficulty largely originates from the inconsistency between the static input-output mappings encoded in deep neural networks and the dynamic nature of traffic phenomena. Under different traffic conditions, such as freely-flowing versus heavily congested traffic, different mappings are needed to predict the propagation of congestion and the resulting speeds over the network more accurately. In this study, we design a novel variant of the graph attention mechanism. The major innovation of this so-called dynamic graph convolution (DGC) module is that local area-wide graph convolutional kernels are dynamically generated from evolving traffic states to capture real-time spatial dependencies. When traffic conditions change, the spatial correlation encoded by DGC module changes as well. Using the DGC, we propose a multistep traffic forecasting model, the Dynamic Graph Convolutional Network (DGCN). Experiments using real freeway data show that the DGCN has a competitive predictive performance compared to other state-of-the-art models. Equally importantly, the prediction process in the DGCN and the trained parameters are indeed explainable. It turns out that the DGCN learns to mimic the upstream-downstream asymmetric information flow of typical road traffic operations. Specifically, there exists a speed-dependent optimal receptive field - which governs what information the DGC kernels assimilate - that is consistent with the back-propagation speed of stop-and-go waves in traffic streams. This implies that the learnt parameters are consistent with traffic flow theory. We believe that this research paves a path to more transparent deep learning models applied for short-term traffic forecasting.
机译:准确和解释的短期交通预测是为了在高级交通管制和指导系统中做出值得信赖的决策。最近,深入学习方法,作为基于流量模型的数据同化和预测方法的数据驱动的替代方法,在这个域中变得流行。许多这些深入学习模型都表现出有希望的预测性能,但本质上遭受缺乏可解释性。这种困难在很大程度上起源于在深神经网络中编码的静态输入输出映射与交通现象的动态性质之间的不一致。在不同的交通条件下,例如自由流动与严重拥挤的流量,需要不同的映射来预测网络的传播和更准确地对网络的传播。在这项研究中,我们设计了一个关于图表注意机制的新型变体。这种所谓的动态图形卷积(DGC)模块的主要创新是从不断发展的交通状态动态生成局域宽的图形卷积内核,以捕获实时空间依赖性。当交通状况发生变化时,DGC模块编码的空间相关性也会发生变化。使用DGC,我们提出了一个多步行流量预测模型,动态图卷积网络(DGCN)。使用真实高速公路数据的实验表明,与其他最先进的模型相比,DGCN具有竞争力的预测性能。同样重要的是,DGCN中的预测过程和训练参数确实可说明。事实证明,DGCN了解模仿典型道路交通运营的上游非对称信息流。具体地,存在一个速度相关的最佳接收字段 - 管辖DGC内核同化的信息 - 这与交通流量中的停止和去波浪的背传播速度一致。这意味着学习的参数与交通流理论一致。我们认为,这项研究铺平了申请短期交通预测的更透明的深度学习模型的道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号