首页> 外文期刊>Transportation research >Life cycle assessment and tempo-spatial optimization of deploying dynamic wireless charging technology for electric cars
【24h】

Life cycle assessment and tempo-spatial optimization of deploying dynamic wireless charging technology for electric cars

机译:电动汽车部署动态无线充电技术的生命周期评估和时空优化

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic wireless power transfer (DWPT), or dynamic wireless charging technology, enables charging-while-driving and offers opportunities for eliminating range anxiety, stimulating market penetration of electric vehicles (EVs), and enhancing the sustainability performance of electrified transportation. However, the deployment of wireless charging lanes on highways and urban road networks can be costly and resource-intensive. A life cycle assessment (LCA) is conducted to compare the sustainability performance of DWPT applied in a network of highways and urban roads for charging electric passenger cars. The assessment compares DWPT to stationary wireless charging and to conventional plug-in charging using a case study of Washtenaw County in Michigan, USA over 20 years. The LCA is based on three key sustainability metrics: costs, greenhouse gas (GHG) emissions, and energy burdens, encompassing not only the use phase burdens from electricity and fuel, but also the upfront deployment burdens of DWPT infrastructure. A genetic algorithm is applied to optimize the rollout of DWPT infrastructure both spatially and temporally in order to minimize life cycle costs, GHG, and energy burdens: (1) spatial optimization selects road segments to deploy DWPT considering traffic volume, speed, and pavement remaining service life (RSL); (2) temporal optimization determines in which year to deploy DWPT on a particular road segment considering EV market share growth as a function of DWPT coverage rate, future DWPT cost reduction, and charging efficiency improvement. Results indicate that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables downsizing of the EV battery capacity by up to 48%, compared to the non-DWPT scenarios. Roadside solar panels and storage batteries are essential to significantly reduce life cycle energy and GHG burdens but bring additional costs. Breakeven analysis indicates a breakeven year for solar charging benefits to pay back the DWPT infrastructure burdens can be less than 20 years for GHG and energy burdens but longer than 20 years for costs. A monetization of carbon emissions of at least $250 per metric tonne of CO2 is required to shift the optimal "pro-cost" deployment to the optimal "pro-GHG" deployment. A roadway segment with volume greater than about 26,000 vehicle counts per day, speed slower than 55 miles per hour (1 mile = 1.609 km), and pavement RSL shorter than 3 years should be given a high priority for early-stage DWPT deployment.
机译:动态无线功率传输(DWPT)或动态无线充电技术可实现边行驶边充电,并为消除里程焦虑,刺激电动汽车(EV)的市场渗透率以及增强电动交通的可持续性提供了机会。但是,在高速公路和城市道路网络上部署无线充电车道可能既昂贵又耗费资源。进行了生命周期评估(LCA),以比较DWPT在为电动乘用车充电的公路和城市道路网络中应用的可持续性。该评估将DWPT与固定无线充电和传统的插入式充电进行了比较,并使用了美国密歇根州Washtenaw县20年的案例研究。 LCA基于三个关键的可持续性指标:成本,温室气体(GHG)排放和能源负担,不仅包括电力和燃料的使用阶段负担,还包括DWPT基础设施的前期部署负担。应用遗传算法在空间和时间上优化DWPT基础设施的部署,以最小化生命周期成本,GHG和能源负担:(1)空间优化在考虑交通量,速度和剩余人行道的情况下选择要部署DWPT的路段使用寿命(RSL); (2)时间优化确定考虑到电动汽车市场份额的增长与DWPT覆盖率,未来DWPT成本的降低以及充电效率的提高之间的函数关系,确定在哪条路段上部署DWPT。结果表明,DWPT的最佳部署可为多达约3%的巷道英里充电,从而分别减少生命周期内的GHG排放和能源达9.0%和6.8%,并使EV电池容量减少多达48% ,与非DWPT方案相比。路边的太阳能电池板和蓄电池对于显着减少生命周期能源和温室气体负担,但带来额外成本至关重要。盈亏平衡分析表明,用于偿还DWPT基础设施负担的太阳能充电收益的盈亏平衡年可能少于20年(GHG和能源负担),但超过20年(成本)。需要将每公吨二氧化碳至少250美元的碳排放货币化,以将最佳的“按成本分配”部署转移到最佳的“按GHG排放”部署。对于早期DWPT部署,应优先考虑道路段,该道路段的日流量大于每天26,000个车辆计数,速度低于每小时55英里(1英里= 1.609 km),并且路面RSL小于3年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号