...
首页> 外文期刊>Transport in Porous Media >Improved Eddy-Viscosity Modelling of Turbulent Flow around Porous-Fluid Interface Regions
【24h】

Improved Eddy-Viscosity Modelling of Turbulent Flow around Porous-Fluid Interface Regions

机译:多孔-流体界面区域周围湍流的改进涡流建模

获取原文
获取原文并翻译 | 示例
           

摘要

The RANS modelling of turbulence across fluid-porous interface regions within ribbed channels has been investigated by applying double (both volume and Reynolds) averaging to the Navier-Stokes equations. In this study, turbulence is represented by using the Launder and Sharma (Lett Heat Mass Transf 1:131-137, 1974) low-Reynolds-number k-epsilon turbulence model, modified via proposals by either Nakayama and Kuwahara (J Fluids Eng 130:101205, 2008) or Pedras and de Lemos (Int Commun Heat Mass Transf 27:211-220, 2000), for extra source terms in turbulent transport equations to account for the porous structure. One important region of the flow, for modelling purposes, is the interface region between the porous medium and clear fluid regions. Here, corrections have been proposed to the above porous drag/source terms in the k and epsilon transport equations that are designed to account for the effective increase in porosity across a thin near-interface region of the porous medium, and which bring about significant improvements in predictive accuracy. These terms are based on proposals put forward by Kuwata and Suga (Int J Heat Fluid Flow 43:35-51, 2013), for second-moment closures. Two types of porous channel flows have been considered. The first case is a fully developed turbulent porous channel flow, where the results are compared with DNS predictions obtained by Breugem et al. (J Fluid Mech 562:35-72, 2006) and experimental data produced by Suga et al. (Int J Heat Fluid Flow 31:974-984, 2010). The second case is a turbulent solid/porous rib channel flow to examine the behaviour of flow through and around the solid/porous rib, which is validated against experimental work carried out by Suga et al. (Flow Turbul Combust 91:19-40, 2013). Cases are simulated covering a range of porous properties, such as permeability and porosity. Through the comparisons with the available data, it is demonstrated that the extended model proposed here shows generally satisfactory accuracy, except for some predictive weaknesses in regions of either impingement or adverse pressure gradients, associated with the underlying eddy-viscosity turbulence model formulation.
机译:通过对Navier-Stokes方程应用两次均值(体积和雷诺数均值),已经研究了带肋通道内流体-多孔界面区域的湍流RANS模型。在这项研究中,湍流由Launder和Sharma(Lett Heat Mass Transf 1:131-137,1974)低雷诺数k-ε湍流模型表示,并由Nakayama和Kuwahara(J Fluids Eng 130 :101205,2008)或Pedras and de Lemos(Int Commun Heat Mass Transf 27:211-220,2000),以获得湍流输运方程式中额外的源项,以说明多孔结构。出于建模目的,流的一个重要区域是多孔介质和透明流体区域之间的界面区域。在这里,已经提出了对k和ε输运方程中的上述多孔阻力/源项的修正,这些修正是为了解决多孔介质薄的近界面区域中孔隙度的有效增加而带来的,从而带来了显着的改进预测准确性。这些术语基于Kuwata和Suga提出的建议(Int J Heat Fluid Flow 43:35-51,2013),用于第二时刻的封闭。已经考虑了两种类型的多孔通道流。第一种情况是充分发展的湍流多孔通道流,其结果与Breugem等人获得的DNS预测进行了比较。 (J Fluid Mech 562:35-72,2006)和Suga等人产生的实验数据。 (Int J Heat Fluid Flow 31:974-984,2010)。第二种情况是湍流的固体/多孔肋骨通道流动,以检查流过固体/多孔肋骨及其周围的流动行为,这一点已针对Suga等人进行的实验工作进行了验证。 (Flow Turbul Combust 91:19-40,2013)。模拟的案例涵盖了一系列多孔性,例如渗透率和孔隙率。通过与现有数据的比较,证明了这里提出的扩展模型显示出总体上令人满意的准确性,除了与基本涡流-粘性湍流模型公式相关的冲击或不利压力梯度区域中的某些预测性弱点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号