...
首页> 外文期刊>Transport in Porous Media >A Study of Microscale Gas Trapping Using Etched Silicon Micromodels
【24h】

A Study of Microscale Gas Trapping Using Etched Silicon Micromodels

机译:刻蚀硅微观模型的微型气体捕集研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Immobilization and trapping of carbon dioxide (CO_2) enhances the security of geological storage. Trapping mechanisms have been characterized in four groups: structural, residual, dissolution, and mineralization. While structural trapping acts immediately when injection starts and is well investigated, the contribution of residual and dissolution trapping increases over storage time and these contributions need to be better understood for better predictions. This paper focuses on an experimental pore-scale investigation of residual and capillary trapping. CO_2-water imbibition experiments were conducted in micromodels whose homogenous pore space is geometrically and topologically similar to Berea sandstone. Microvisual data, photographs and video footage, describes the trapping mechanism and, especially, the disconnection and shrinkage of the CO_2 phase. Results show that depending on the flow rate of the imbibing water different trapping mechanisms are observed. Lower flow rates, comparable to the trailing edge of a CO_2 plume, lead to more snap-off events and greater trapped residual saturation, whereas rates comparable to the near wellbore area during enhanced sequestration showed displacement of gas bubbles and greater dissolution that ultimately leads to very low or zero gas saturations. Furthermore, complete dissolution events showed that homogenous as well as heterogeneous dissolution occurs. Whereas the latter is subdivided into microbubble formation and dissolution on crevices or pore roughness, the former occurs without the influence of pore walls. Based on the observations we suggest that the type of rock and its roughness as well as the fines present at the CO_2 brine interface are important factors determining the dissolution mechanism.
机译:固定和捕获二氧化碳(CO_2)可以增强地质存储的安全性。捕集机理的特征分为四类:结构,残留,溶解和矿化。虽然结构性捕集在注入开始后立即起作用,并且已得到充分研究,但残留和溶出捕集的作用随存储时间的增加而增加,需要更好地理解这些作用以进行更好的预测。本文着重于残留和毛细管捕集的实验性孔尺度研究。在微观模型中进行了CO_2-水吸收实验,该模型的均匀孔隙空间在几何学和拓扑学上均与Berea砂岩相似。微观图像数据,照片和录像片段描述了捕集机制,尤其是CO_2相的分离和收缩。结果表明,根据吸入水的流速,可以观察到不同的捕集机理。较低的流速(与CO_2羽流的后缘相当)导致更多的折断事件和更大的残留残余饱和度,而在螯合增强期间,与近井眼面积相当的流速表明气泡位移和更大的溶解度最终导致气体饱和度非常低或为零。此外,完全的溶出事件表明发生了均匀溶出和异质溶出。后者可细分为微气泡的形成和在缝隙或孔隙粗糙度上的溶解,而前者的发生不受孔隙壁的影响。根据观察结果,我们认为岩石的类型及其粗糙度以及CO_2盐水界面处的细屑是决定溶解机理的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号