首页> 外文期刊>Transport in Porous Media >A Fractal Model for Gas-Water Relative Permeability in Inorganic Shale with Nanoscale Pores
【24h】

A Fractal Model for Gas-Water Relative Permeability in Inorganic Shale with Nanoscale Pores

机译:纳米级孔隙的无机页岩气水相对渗透率的分形模型

获取原文
获取原文并翻译 | 示例
           

摘要

A reliable gas-water relative permeability model in shale is extremely important for the accurate numerical simulation of gas-water two-phase flow (e.g., fracturing fluid flowback) in gas-shale reservoirs, which has important implication for the economic development of gas-shale reservoir. A gas-water relative permeability model in inorganic shale with nanoscale pores at laboratory condition and reservoir condition was proposed based on the fractal scaling theory and modified non-slip boundary of continuity equation in the nanotube. The model not only considers the gas slippage in the entire Knudsen regime, multilayer sticking (near-wall high-viscosity water) and the quantified thickness of water film, but also combines the real gas effect and stress dependence effect. The presented model has been validated by various experiments data of sandstone with microscale pores and bulk shale with nanoscale pores. The results show that: (1) The Knudsen diffusion and slippage effects enhance the gas relative permeability dramatically; however, it is not obviously affected at high pressure. (2) The multilayer sticking effect and water film should not be neglected: the multilayer sticking would reduce the water relative permeability as well as slightly decrease gas relative permeability, and the film flow has a negative impact on both of the gas and water relative permeability. (3) The increased fractal dimension for pore size distribution or tortuosity would increase gas relative permeability but decrease the water relative permeability for a given saturation; however, the effect on relative permeability is not that notable. (4) The real gas effect is beneficial for the gas relative permeability, and the influence is considerable when the pressure is high enough and when the nanopores of bulk shale are mostly with smaller size. For the stress dependence, not like the intrinsic permeability, none of the gas or water relative permeability is sensitive to the net pressure and it can be ignored completely.
机译:页岩中可靠的气水相对渗透率模型对于气页岩储层气水两相流(例如压裂液返排)的精确数值模拟非常重要,这对气藏经济发展具有重要意义。页岩储层。基于分形标度理论和修正的纳米管连续方程的防滑边界,提出了在实验室条件和储层条件下具有纳米级孔隙的无机页岩气水相对渗透率模型。该模型不仅考虑了整个克努森状态下的瓦斯滑移,多层粘结(近壁高粘度水)和定量的水膜厚度,而且还结合了实际的瓦斯效应和应力依赖性效应。所提出的模型已通过各种实验数据验证,这些数据具有微尺度孔隙的砂岩和具有纳米尺度孔隙的块状页岩。结果表明:(1)Knudsen扩散和滑动效应大大提高了气体的相对渗透率;但是,在高压下它显然没有受到影响。 (2)不应忽略多层粘结作用和水膜:多层粘结会降低水的相对渗透率,并略微降低气体的相对渗透率,并且膜流量对气体和水的相对渗透率均具有负面影响。 (3)在给定的饱和度下,增加孔径分布或曲折性的分形维数会增加气体的相对渗透率,但会降低水的相对渗透率;然而,相对渗透率的影响并不明显。 (4)真正的瓦斯效应有利于气体的相对渗透率,当压力足够高且块状页岩的纳米孔大多较小时,影响很大。对于应力依赖性,与固有渗透率不同,气体或水的相对渗透率都不对净压力敏感,因此可以完全忽略。

著录项

  • 来源
    《Transport in Porous Media》 |2018年第2期|305-331|共27页
  • 作者单位

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    Univ Calgary, Chem & Petr Engn, Calgary, AB T2N 1N4, Canada;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, State Key Lab Petr Resources & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gas-water relative permeability; Bulk shale; Fractal; Gas slippage; Multilayer sticking; Water film;

    机译:气水相对渗透率;块状页岩;分形;瓦斯滑移;多层黏着;水膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号