首页> 外文期刊>Transactions of the American nuclear society >Design and Verification Testing for Metallic Fuel Relocation Experiments with Pressure Injection in a Pin Bundle Core Structure of a Sodium-Cooled Fast Reactor
【24h】

Design and Verification Testing for Metallic Fuel Relocation Experiments with Pressure Injection in a Pin Bundle Core Structure of a Sodium-Cooled Fast Reactor

机译:钠冷却快速反应器的销束芯结构压力注射的金属燃料搬迁实验的设计与验证测试

获取原文
获取原文并翻译 | 示例
           

摘要

A pool-type sodium-cooled fast reactor (SFR) using metallic fuel has a number of inherent safety features that may support benign consequences for design basis accidents (DBAs). Even in postulated severe accident conditions, the molten core is designed to remain under sub-critical condition in a passive coolable geometry. Partial core melt down of Experimental Breeder Reactor-1 (EBR-1) provided some evidence of fuel relocation and dispersion behavior in a postulated severe accident. In the case of the postulated severe accidents in SFRs, relocating fuel in the active core area along the coolant channel is an important negative reactive feedback factor that lowers the reactor power level and consequently eliminates the possibility of recriticality. Therefore, understanding the relocation behavior of fuels and the coolability of the relocated fuels in the postulated severe accident is one of the most important factors in the safety assessment of SFRs. Research has continued to understand the relocation behavior of metallic fuels under the postulated severe accidents [1-13]. Early work focused on fragmentation behavior of molten metallic fuels in an open sodium pool and revealed high porosity of the fragmented fuels [1-7]. Recently, studies have been conducted on the relocation behavior of the metallic fuels in the realistic core channels [8-13]. Kim et al. studied the relocation behavior of the metallic fuel in single pin core structures using the Argonne's Metallic Uranium Safety Experiment (MUSE) facility [11, 12]. The relocation behavior of the metallic fuel was then investigated using pin bundle test sections in the MUSE facility. The pin bundle test sections were fabricated as a mock-up of the fuel assembly of the prototype generation-IV sodium-cooled fast reactor (PGSFR) which is developed by Korea Atomic Energy Research Institute (KAERI) [13]. This study showed that the relocated metal fuel could have a porous medium even in a pin bundle geometry.
机译:使用金属燃料的池型钠冷却的快电反应器(SFR)具有许多固有的安全功能,可支持设计基础事故(DBA)的良性后果。即使在假定的严重事故条件下,熔融芯设计用于在被动冷却几何形状中保留在亚临界状态下。实验育种者反应器-1(EBR-1)的部分核心熔化提供了一些燃料重新定位和分散行为的一些证据。在SFR中假设严重事故的情况下,沿着冷却剂通道重新迁移有源核心区域的燃料是降低反应器功率水平的重要负反馈因子,从而消除了中临的可能性。因此,了解燃料的搬迁行为和所发售的严重事故中的重新定位燃料的可冷却性是SFR安全评估中最重要的因素之一。研究继续了解假期严重事故下金属燃料的搬迁行为[1-13]。早期工作专注于开放钠池中熔融金属燃料的碎片行为,揭示了碎片燃料的高孔隙率[1-7]。最近,已经在现实核心渠道中金属燃料的重定位行为进行了研究[8-13]。 Kim等人。使用Argonne的金属铀安全实验(Muse)设施[11,12]研究了单针芯结构中金属燃料的搬迁行为[11,12]。然后使用Muse设施中的引脚束测试部分研究金属燃料的搬迁行为。销束试验部分被制造为由韩国原子能研究所(Kaeri)开发的原型发电-4〜钠冷却的快速反应器(PGSFR)的燃料组件的模拟。该研究表明,即使在销束几何形状中,迁移的金属燃料也可以具有多孔介质。

著录项

  • 来源
    《Transactions of the American nuclear society》 |2020年第6期|829-831|共3页
  • 作者单位

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

    Argonne National Laboratory 9700 S Cass Ave B206 Argonne IL 60439 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号