首页> 外文期刊>Thin-Walled Structures >Multi-response optimization design of tailor-welded blank (TWB) thin-walled structures using Taguchi-based gray relational analysis
【24h】

Multi-response optimization design of tailor-welded blank (TWB) thin-walled structures using Taguchi-based gray relational analysis

机译:基于Taguchi的灰关联分析的TWB薄壁结构的多响应优化设计。

获取原文
获取原文并翻译 | 示例
           

摘要

In order to further improve crashworthiness and reduce weight, tailor-welded blanks (TWBs) have been widely applied in auto-body design. In this paper, the discrete optimization design of TWBs structures with top-hat thin-walled section subjected to front dynamic impact is performed by using Taguchi-based gray relational analysis. Material grades and thicknesses with three levels are taken as discrete design variables. The total energy absorption (EA), the total weight (Mass) and the peak crashing force (F-max) are chosen as optimization indicators. Considering the uncertain weight ratio of responses, four different cases would be analyzed. In order to determine the optimal parameter combination more accurately and eliminate errors from range analysis, the analysis of variance (ANOVA) would be performed. The optimized results demonstrate that it is feasible to increase the crashworthiness of TWBs by increasing the gray correlation of the structure. Compared to initial structure, case 1 (w(F-max):w(EA):w(Mass) = 1/3:1/3:1/3) has the largest improvement among the four cases, i.e., the F-ma(x) and the Mass are reduced by 29.3% and 2.7%, respectively, while the EA is increased by 3.5%. The discrete optimization method with only 27 iterations is a low computing cost or cost-effective and provides some guidance for some similar structural design. More comprehensive studies are essential to optimize performance of multi-components with more discrete variables.
机译:为了进一步提高耐撞性并减轻重量,定制焊接的毛坯(TWB)已广泛应用于车身设计中。本文采用基于Taguchi的灰色关联度分析方法,对具有顶帽薄壁截面的TWBs结构进行了前部动力冲击的离散优化设计。具有三个级别的材料等级和厚度被视为离散的设计变量。选择总能量吸收(EA),总重量(Mass)和峰值碰撞力(F-max)作为优化指标。考虑到不确定的响应权重比,将分析四种不同的情况。为了更准确地确定最佳参数组合并消除范围分析中的误差,将执行方差分析(ANOVA)。优化结果表明,通过增加结构的灰色相关性来提高TWB的耐撞性是可行的。与初始结构相比,情况1(w(F-max):w(EA):w(Mass)= 1/3:1/3:1/3)在四种情况下,F的改进最大。 -ma(x)和质量分别减少了29.3%和2.7%,而EA增加了3.5%。仅27次迭代的离散优化方法计算成本低廉或具有成本效益,并为某些类似的结构设计提供了一些指导。进行更全面的研究对于优化具有更多离散变量的多组件的性能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号