首页> 外文期刊>Thin Solid Films >Error function for interpretations of ellipsometric measurements
【24h】

Error function for interpretations of ellipsometric measurements

机译:误差函数用于解释椭偏测量

获取原文
获取原文并翻译 | 示例
       

摘要

As a rule, the results of physical measurements are interpreted by searching for a set of parameters, which minimize some error function (EF) (target function, figure of merit function). The latter is a measure of discrepancy (difference) between experimental data and model values. Interpretation of ellipsometric measurements involves a variety of EFs used for this purpose. In agreement with the known principle of maximum likelihood (MLH), one should choose such a set of parameters, which would provide a maximal probability to obtain the analyzed set of experimental data. In this case, EF is proportional to the logarithm of inverse probability of obtaining the given set of experimental data. Assuming that for the null measurement method the probability of obtaining the given values of ellipsometric angles is determined by the intensity of light at the detector input, we obtained a simple equation for the EF, meeting the requirement of MLH. This is a photometric EF: Φ = |E_f|~2, E_f = R_p cos(Ψ_E) - R_s sin(Ψ_E) exp(jΔ_E). Here, E_f is proportional to the electric field strength of the transmitted light wave at the output of the ellipsometer. The condition of complete extinction of transmitted light is equivalent to R_p cos(Ψ_E) = R_s sin(Ψ_E) exp(jΔ_E). Thus, the so-called basic equation of ellipsometry: R_p/R_s = tan(Ψ) exp(jΔ)―is a modified form of the equation describing the transmitted light extinction. It is also shown that |E_f|~2 is proportional to the square of distance between the points on the Poincare sphere corresponding to experimental data and model values. The coefficient of proportionality is equal to the coefficient of reflection of non-polarized light: R = (|R_p|~2 + |R_s|~2)/2.
机译:通常,物理测量的结果是通过搜索一组参数来解释的,这些参数可使某些误差函数(EF)(目标函数,品质因数函数)最小化。后者是实验数据与模型值之间差异(差异)的量度。椭偏测量的解释涉及为此目的使用的各种EF。与已知的最大似然原理(MLH)相一致,应该选择这样的一组参数,这将提供最大的概率来获得分析的一组实验数据。在这种情况下,EF与获得给定实验数据集的逆概率对数成正比。假定对于零值测量方法,由检测器输入端的光强度确定获得给定的椭偏角值的可能性,我们获得了一个简单的EF方程,满足MLH的要求。这是一个光度学EF:Φ= | E_f |〜2,E_f = R_p cos(Ψ_E)-R_s sin(Ψ_E)exp(jΔ_E)。在此,E_f与椭圆偏振仪的输出处的透射光波的电场强度成比例。透射光完全消光的条件等于R_p cos(Ψ_E)= R_s sin(Ψ_E)exp(jΔ_E)。因此,所谓的椭圆偏振基本方程:R_p / R_s = tan(Ψ)exp(jΔ)-是描述透射光消光的方程的一种修改形式。还显示| E_f |〜2与庞加莱球上与实验数据和模型值相对应的点之间的距离的平方成正比。比例系数等于非偏振光的反射系数:R =(| R_p |〜2 + | R_s |〜2)/ 2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号