首页> 外文期刊>Thin Solid Films >Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell
【24h】

Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

机译:量子点中带太阳能电池中由两个光子跃迁产生的光电流的低温表征

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed.
机译:中带太阳能电池被认为超出了常规光伏设备的转换效率,其工作基于除了通常的带到带光学跃迁之外,还利用了两个子带隙光子的吸收。目前,用于在实际设备中实现中间频带的唯一技术是InAs / GaAs量子点超晶格的增长。在实践中,所获得的材料显示出两个局限性:导带和中间带之间的窄能隙以及由于晶格应力而导致的生长缺陷的出现。结果是存在非辐射复合机制以及电子从中间带到导带的热逸出,从而阻碍了与中间带和导带相关的准费米能级的分裂以及与二者相关的光电流的观察。 -光子吸收。通过降低表征器件的温度,我们抑制了寄生热机制,并成功测量了由两个带隙以下的光子吸收引起的光电流。在这项工作中,介绍并讨论了该光电流在低温下的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号