首页> 外文期刊>Thermal engineering >Treatment of the Equations of Metal Oxidation Rates at Nuclear Power Plants and Thermal Power Plants in Terms of Thermodynamics
【24h】

Treatment of the Equations of Metal Oxidation Rates at Nuclear Power Plants and Thermal Power Plants in Terms of Thermodynamics

机译:从热力学角度看核电厂和火电厂金属氧化率方程的处理

获取原文
获取原文并翻译 | 示例
       

摘要

The results of the thermodynamic analysis of experimental data and the kinetics equations of hightemperature steam oxidation of iron-based alloys (in the process of a thermal power plant operation) and of zirconium and iron alloys applied in manufacturing of fuel element cladding (at loss-of-coolant accident (LOCA)) are presented. The method of sorting data on the Arrhenius equation parameters and criteria of their reliability are proposed. The dependence of the Arrhenius equation parameter variance depends on the alloy composition and concentration of oxidants (oxygen, steam). The results of isothermal tests in one medium allow relating the activation energy of alloy oxidation to their chemical composition in order to study the process of their oxidation. The algorithm for calculation of oxidation rates and the thermodynamic model of alloy steam oxidation dependence on their composition are developed. The simulation engages the exponential dependence of the molecule collision frequency factor on the entropy of reaction activation in the Arrhenius equation for reactions proceeding on the surfaces of different alloys according to a uniform mechanism and the notion of pseudobinarity of alloys when all dopes in the alloy behave as a single second alloy component, each with its own stoichiometrical coefficient. The verification of the model is accomplished using the plausible experimental data, and the kinetics of steam oxidation is determined (the temperature interval is 1073–1473 K) for zirconium alloys E110opt, E635 on the sponge base, and comparison with the kinetics of M5 alloy oxidation is carried out. For iron–chrome alloys with different contents of the latter, the results of calculations by the proposed model are compared to the data of the experiment on oxidation of alternative cladding alloys. The established laws can be used as a basis to develop the calculation code module for changing the physical state of iron–zirconium alloy fuel element cladding during the failure. The changes can be caused by such phenomena as oxidation, creep strain, and rupture of cladding.
机译:对铁基合金(在火力发电厂运行过程中)以及用于制造燃料元件包壳的锆和铁合金进行高温蒸汽氧化的实验数据和动力学方程的热力学分析结果(损失-介绍了冷却剂事故(LOCA)。提出了关于阿伦尼乌斯方程参数的数据排序方法及其可靠性判据。 Arrhenius方程参数方差的依赖性取决于合金成分和氧化剂(氧气,蒸汽)的浓度。在一种介质中进行等温测试的结果允许将合金氧化的活化能与其化学成分相关联,以便研究其氧化过程。建立了氧化速率计算算法和合金蒸汽氧化对其组成的依赖关系的热力学模型。该模拟根据均匀机理和合金中所有掺杂行为时合金的拟二元性概念,将分子碰撞频率因数与Arrhenius方程中反应激活熵的指数相关性用于不同合金表面上进行的反应。作为单一的第二合金成分,每个成分都有自己的化学计量系数。使用合理的实验数据对模型进行了验证,并确定了海绵基上的锆合金E110opt,E635的蒸汽氧化动力学(温度区间为1073–1473 K),并与M5合金的动力学进行了比较。进行氧化。对于后者含量不同的铁铬合金,将所提出模型的计算结果与替代包层合金的氧化实验数据进行了比较。既定的规律可作为开发计算代码模块的基础,该模块可在故障期间更改铁锆合金燃料元件包壳的物理状态。这种变化可能是由诸如氧化,蠕变应变和覆层破裂等现象引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号