首页> 外文期刊>Theoretical Chemistry Accounts >Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach
【24h】

Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach

机译:水合在确定水溶液中L-丙氨酸和N-乙酰基L-丙氨酸N'-甲酰胺的结构和振动光谱中的作用:理论和实验相结合的方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this work we have utilized recent density functional theory Born-Oppenheimer molecular dynamics simulations to determine the first principles locations of the water molecules in the first solvation shell which are responsible for stabilizing the zwitterionic structure of L-alanine. Previous works have used chemical intuition or classical molecular dynamics simulations to position the water molecules. In addition, a complete shell of water molecules was not previously used, only the water molecules which were thought to be strongly interacting (H-bonded) with the zwitterionic species. In a previous work by Tajkhorshid et al. (J Phys Chem B 102:5899) the L-alanine zwitterion was stabilized by 4 water molecules, and a subsequent work by Frimand et al. (Chem Phys 255:165) the number was increased to 9 water molecules. Here we found that 20 water molecules are necessary to fully encapsulate the zwitterionic species when the molecule is embedded within a droplet of water, while 11 water molecules are necessary to encapsulate the polar region with the methyl group exposed to the surface, where it migrates during the MD simulation. Here we present our vibrational absorption, vibrational circular dichroism and Raman and Raman optical activity simulations, which we compare to the previous simulations and experimental results. In addition, we report new VA, VCD, Raman and ROA measurements for L-alanine in aqueous solution with the latest commercially available FTIR VA/VCD instrument (Biotools, Jupiter, FL, USA) and Raman/ROA instrument (Biotools). The signal to noise of the spectra of L-alanine measured with these new instruments is significantly better than the previously reported spectra. Finally we reinvestigate the causes for the stability of the Pπ structure of the alanine dipeptide, also called N-acetyl-L-alanine N′-methylamide, in aqueous solution. Previously we utilized the B3LYP/6-31G* + Onsager continuum level of theory to investigate the stability of the NALANMA4WC Han et al. (J Phys Chem B 102:2587) Here we use the B3PW91 and B3LYP hybrid exchange correlation functionals, the aug-cc-pVDZ basis set and the PCM and CPCM (COSMO) continuum solvent models, in addition to the Onsager and no continuum solvent model. Here by the comparison of the VA, VCD, Raman and ROA spectra we can confirm the stability of the NALANMA4WC due to the strong hydrogen bonding between the four water molecules and the peptide polar groups. Hence we advocate the use of explicit water molecules and continuum solvent treatment for all future spectral simulations of amino acids, peptides and proteins in aqueous solution, as even the structure (conformer) present cannot always be found without this level of theory.
机译:在这项工作中,我们利用最新的密度泛函理论Born-Oppenheimer分子动力学模拟来确定水分子在第一个溶剂化壳中的第一个原理位置,该位置负责稳定L-丙氨酸的两性离子结构。以前的工作使用化学直觉或经典的分子动力学模拟来定位水分子。另外,以前没有使用完整的水分子壳,仅使用了被认为与两性离子物质强烈相互作用(H键)的水分子。在Tajkhorshid等人的先前工作中。 (J Phys Chem B 102:5899),L-丙氨酸两性离子被4个水分子稳定,随后Frimand等人的工作被稳定。 (Chem Phys 255:165),该数目增加到9个水分子。在这里,我们发现,当分子嵌入水滴中时,必须有20个水分子才能完全包封两性离子物质,而当甲基暴露在表面时,需要11个水分子才能包封极性区域,在迁移过程中MD模拟。在这里,我们介绍了我们的振动吸收,振动圆二色性以及拉曼和拉曼光学活性模拟,并将其与以前的模拟和实验结果进行了比较。此外,我们报告了最新的市售FTIR VA / VCD仪器(Biotools,Jupiter,FL,美国)和拉曼/ ROA仪器(Biotools)对水溶液中L-丙氨酸的新VA,VCD,拉曼和ROA测量结果。用这些新仪器测得的L-丙氨酸光谱的信噪比明显好于以前报道的光谱。最后,我们重新研究了在水溶液中丙氨酸二肽(也称为N-乙酰基-L-丙氨酸N'-甲酰胺)的Pπsub结构稳定性的原因。以前,我们利用B3LYP / 6-31G * + Onsager连续谱理论来研究NALANMA4WC Han等人的稳定性。 (J Phys Chem B 102:2587)除了Onsager和无连续溶剂外,我们还使用B3PW91和B3LYP混合交换相关函数,ug-cc-pVDZ基集以及PCM和CPCM(COSMO)连续溶剂模型模型。在这里,通过比较VA,VCD,拉曼光谱和ROA光谱,我们可以确定NALANMA4WC的稳定性,这是由于四个水分子与肽极性基团之间的氢键很强。因此,我们提倡对水溶液中氨基酸,肽和蛋白质的所有未来光谱模拟使用显式水分子和连续溶剂处理,因为即使没有这种理论水平也无法始终找到存在的结构(构象异构体)。

著录项

  • 来源
    《Theoretical Chemistry Accounts》 |2008年第3期|191-210|共20页
  • 作者单位

    Nanochemistry Research Institute Department of Applied Chemistry Curtin University of Technology GPO Box U1987 Perth WA 6845 Australia;

    Laboratory of Physics Helsinki University of Technology P.O. Box 1100 02015 HUT Espoo Finland;

    Laboratory of Physics Helsinki University of Technology P.O. Box 1100 02015 HUT Espoo Finland;

    Department of Chemistry Syracuse University Syracuse NY USA;

    Department of Chemistry Syracuse University Syracuse NY USA;

    Department of Chemistry Glasgow University Glasgow G12 8QQ UK;

    Department of Chemistry Glasgow University Glasgow G12 8QQ UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号