首页> 外文期刊>Theoretical Chemistry Accounts >Theoretical study on the role of cooperative solvent molecules in the neutral hydrolysis of ketene
【24h】

Theoretical study on the role of cooperative solvent molecules in the neutral hydrolysis of ketene

机译:协同溶剂分子在乙烯酮中性水解中作用的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The results of a theoretical study of the reaction mechanism for the neutral hydration of ketene, H2C=C=O + (n + 1) H2O → CH3COOH + nH2O (n = 0–4), in solution are presented. All structures were optimized and characterized at the MP2(fc)/6-31 + G* level of theory, and then re-optimized by MP2(fc)/6-311 ++G**, and the effect of the bulk solvent is taken into account according to the conductor-like polarized continuum model (CPCM) using the gas MP2(fc)/6-311 ++G** geometries. Energies were refined for five-water hydration at higher level of theory, QCISD(T)(fc)/6-311 ++G**//MP2(fc)/6-311 ++G**. In the combined supermolecular/continuum model, one water molecule directly attacks the central C-atom, and the other four explicit water molecules are divided into two groups, one acting as catalyst(s) by participating in the proton transfer to reduce the tension of proton transfer ring, and the other being placed near the non-reactive oxygen or carbon atom in order to catalyze the hydration by engaging in hydrogen-bonding to the substrate (the so-called cooperative effect). Between the two possible nucleophilic addition reactions of water molecule, across the C=O bond or the C=C bond, the former one is preferred. Our calculations suggest that the favorable hydrolysis mechanism of ketene involves a sort of eight-membered ring transition structure formed by a three-water proton transfer loop, and a cooperative dimeric water near the non-reactive carbon-atom. The best-estimated in the present paper for the rate-determining barrier in solution, $ Updelta G_{text{sol}}^{ ne } $ (298 K), is about 58 kJ/mol, reasonably close to the available experimental result.
机译:乙烯酮中性水合反应机理的理论研究结果,H2 C = C = O +(n +1)H2 O→CH3 COOH + nH2 O(n = 0–4)在解决方案中被提出。在理论水平上对所有结构进行了优化和表征,达到了MP2(fc)/ 6-31 + G *的水平,然后通过MP2(fc)/ 6-311 ++ G **和本体溶剂的作用对其进行了优化。根据使用气体MP2(fc)/ 6-311 ++ G **几何形状的类似导体的极化连续介质模型(CPCM),应考虑到λ。在更高的理论水平(QCISD(T)(fc)/ 6-311 ++ G ** // MP2(fc)/ 6-311 ++ G **)中对五水水合的能量进行了精炼。在组合的超分子/连续谱模型中,一个水分子直接攻击中心C原子,另外四个显性水分子被分为两组,一组通过参与质子转移以降低分子的张力而充当催化剂。质子转移环,另一个放置在非反应性氧或碳原子附近,以通过与底物进行氢键键合来催化水合作用(所谓的协同效应)。在水分子的两个可能的亲核加成反应之间,跨越C = O键或C = C键,优选前者。我们的计算表明,乙烯酮的有利水解机理涉及由三水质子转移环和非反应性碳原子附近的二聚水形成的八元环过渡结构。对于溶液中的速率决定性障碍,本文的最佳估计为$ Updelta G_ {text {sol}} ^ {ne} $(298 K),约为58 kJ / mol,相当接近可用的实验结果。

著录项

  • 来源
    《Theoretical Chemistry Accounts》 |2010年第6期|493-506|共14页
  • 作者单位

    College of Chemistry and Key State Laboratory of Biotherapy Sichuan University Chengdu 610064 People’s Republic of China;

    College of Chemistry and Key State Laboratory of Biotherapy Sichuan University Chengdu 610064 People’s Republic of China;

    College of Chemistry and Key State Laboratory of Biotherapy Sichuan University Chengdu 610064 People’s Republic of China;

    College of Chemistry and Key State Laboratory of Biotherapy Sichuan University Chengdu 610064 People’s Republic of China;

    Department of Biology and Chemistry City University of Hong Kong Kowloon Hong Kong;

    Department of Chemistry The Chinese University of Hong Kong Shatin NT Hong Kong;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ketene; Hydrolysis mechanism; Supermolecular/continuum model; Cooperative effect; Solvent effect;

    机译:乙烯酮;水解机理;超分子/连续体模型;协同作用;溶剂作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号