首页> 外文期刊>The Journal of Navigation >Investigations into Phase Multipath Mitigation Techniques for High Precision Positioning in Difficult Environments
【24h】

Investigations into Phase Multipath Mitigation Techniques for High Precision Positioning in Difficult Environments

机译:困难环境中高精度定位的相位多径抑制技术研究

获取原文
获取原文并翻译 | 示例
           

摘要

The modelling of most Global Navigation Satellite System (GNSS) errors/biases and developments of data processing techniques have been improved substantially since the birth of Global Positioning System (GPS), however, there has been much less progress in the improvement of phase multipath mitigation techniques. Multipath therefore remains one of the most important error sources in high precision GNSS positioning. This is because multipath is site-dependent and therefore cannot be eliminated by differencing techniques. Also multipath is highly dependent on satellite-reflector-antenna geometry, which usually causes rapid changes in phase multipath errors especially in Real-Time Kinematic (RTK) applications. Multipath mitigation for static antennas such as those at reference stations can be carried out by site calibration, averaging over long observation times, and through the estimation of the error using filtering based on signal-to-noise ratio (SNR) data. However, multipath mitigation for kinematic antennas is still very difficult today. Nevertheless, much research has been carried out on a particular class of phase multipath mitigation techniques: ones that can be applied within positioning algorithms (rather than incorporated into the receiver tracking loops or antennas). This paper investigates and further develops a number of state-of-the-art techniques in this category. They include phase multipath estimation using SNR data, phase multipath estimation through the use of closely spaced antennas, multipath mitigation stochastic models such as the satellite elevation angle model and SNR-based models (SIGMA-e model and our modified SNR-based model), and our own novel ray-tracing method. The techniques are tested with both real and simulated data, the real test datasets have been collected on the Laboratoire Central des Ponts et Chaussees (LCPC) testbed near Nantes in France, and on the campus of the University of Nottingham during SPACE data collection experiments.
机译:自全球定位系统(GPS)诞生以来,大多数全球导航卫星系统(GNSS)误差/偏向的建模和数据处理技术的发展已得到实质性改善,但是,在改善相位多径缓解方面进展甚微技术。因此,多径仍然是高精度GNSS定位中最重要的误差源之一。这是因为多路径取决于站点,因此无法通过差异技术消除。另外,多径还高度依赖于卫星反射器-天线的几何形状,这通常会引起相位多径误差的快速变化,尤其是在实时运动(RTK)应用中。静态天线(例如参考站上的天线)的多径缓解可以通过站点校准,在较长的观察时间上进行平均,以及通过使用基于信噪比(SNR)数据的滤波来估计误差来进行。但是,今天,运动学天线的多径缓解仍然非常困难。尽管如此,已经对一类特定的相位多径缓解技术进行了大量研究:这些技术可以在定位算法中应用(而不是并入接收器跟踪环路或天线中)。本文研究并进一步开发了该类别中的许多最新技术。它们包括使用SNR数据的相位多径估计,通过使用紧密间隔的天线进行相位多径估计,诸如卫星仰角模型和基于SNR的模型(SIGMA-e模型和我们基于SNR的改进模型)的多径缓解随机模型,以及我们自己新颖的光线追踪方法对该技术进行了真实和模拟数据测试,真实的测试数据集已在法国南特附近的中央实验室蓬塔-库斯湖(LCPC)测试台上收集,并在SPACE数据收集实验期间在诺丁汉大学校园内收集到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号