首页> 外文期刊>TERI Information Digest on Energy and Environment >New energy conversion layer for biosolar cells
【24h】

New energy conversion layer for biosolar cells

机译:生物渗细胞的新能量转换层

获取原文
获取原文并翻译 | 示例
           

摘要

A research team has produced a semi-artificial electrode that could convert light energy into other forms of energy in biosolar cells. The technique is based on the photosynthesis protein photosystem I from cyanobacteria. The group showed that they could couple their system with an enzyme that used the converted light energy to produce hydrogen. Photosystem I is part of the photosynthesis machinery in cyanobacteria and plants. With the help of light energy, it can separate charges and thus generate high-energy electrons that can be transferred to other molecules, for example, to protons for the production of hydrogen. In earlier work, the researchers had already used the light-collecting protein complex photosystem I to design electrodes for biosolar cells. For this purpose, they covered an electrode with a photosystem I monolayer.Insuchmonolayers,thephotosystems are not stacked on top of each other but lie side by side in the same plane. Photosystem I, however, usually occurs as a trimer, that is, three photosystems are always linked together. Since the trimers cannot be packed close together, holes appear in the monolayer that can lead to short circuits. This impairs the performance of the system. It was precisely this problem that the scientists solved in the present work. In the cyanobacterium Thermosynechococcus elongatus, photosystem I exists mainly as a trimer. Using a new extraction technique, the researchers were able to isolate additionally monomers from the organism, creating a photosystem I monolayer on the electrode in which the monomers filled the holes between the trimers. In this way, they reduced short-circuit effects. The system achieved current densities twice as high as a system consisting only of trimers. To show what the technique could be in principle used for, the scientists coupled it to a hydrogenase enzyme that produced hydrogen using electrons provided by the photosystem. The future work will be directed toward even more efficient coupling between the photosystem monolayer and the integrated biocatalysts to realize practical biosystems for solar energy conversion.
机译:研究团队制作了半人造电极,可以将光能转化为生物溶细胞中的其他形式的能量。该技术基于来自Cyanobacteria的光合作用蛋白质光系统。本集团表明,它们可以将其系统与使用转换的光能产生氢的酶耦合。 PERSICYSTEMI是Cyanobacteria和植物光合作用机械的一部分。在光能的帮助下,它可以分离电荷,从而产生可以转移到其他分子的高能电子,例如,例如用于生产氢的质子。在早期的工作中,研究人员已经使用了光收集蛋白质复杂的照相I来设计生物溶细胞的电极。为此目的,它们覆盖了一个带有照片I Monolayer.InsuchMonolayers的电极,PhotoStems没有堆叠在一起,但在同一平面上并排躺着。然而,照相我通常会作为三聚机构发生,即三个照片始终将它们连接在一起。由于三聚体不能靠近封装在一起,因此孔出现在可以导致短路的单层中。这损害了系统的性能。这正是这个问题在现在的工作中解决的问题。在Cyanobacterium Thermosynechocccus Elongatus,照相我主要作为三聚体存在。使用新的提取技术,研究人员能够分离来自生物体的单体,在电极上产生单层的照相我的单体,其中单体填充了三角形之间的孔。通过这种方式,它们降低了短路效应。该系统实现了电流密度的两倍,只有仅由三聚体组成的系统。为了展示该技术原则上的原则上,科学家们将其耦合到产生氢酶的氢酶,所述氢酶使用光系统提供的电子产生氢。未来的工作将针对照相单层和集成的生物催化剂之间更有效的耦合,以实现太阳能转换的实用生物系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号