首页> 外文期刊>Surface Science >Reversible molecular switching at a metal surface: A case study of tetra-tert-butyl-azobenzene on Au(111)
【24h】

Reversible molecular switching at a metal surface: A case study of tetra-tert-butyl-azobenzene on Au(111)

机译:金属表面上的可逆分子转换:以Au(111)上的四叔丁基偶氮苯为例

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular switches represent a fascinating class of functional molecules, whose properties can be revers-ibly changed between different molecular states by excitation with light or other external stimuli. Using surface science concepts like self assembly to align such molecules in a well-defined geometry at solid surfaces, new functional properties may arise, which are relevant for different fields like, e.g., molecular electronics, sensing or biocompatible interfaces. For a microscopic understanding of molecular switching at surfaces, it is essential to obtain detailed knowledge on the underlying elementary processes, for instance the excitation mechanism in photoinduced switching. Here we present a case study of a specifically designed azobenzene derivative on a metal surface, namely tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111), which is so far one of the best studied system for which reversible conformational changes have been demonstrated. TBA/Au(111) can thus be viewed as model system in order to gain deeper insights into molecular switching processes at metal surfaces. We have studied the photoinduced and thermally activated reversible switching of TBA in direct contact with a Au(111) surface using two-photon photoemission (2PPE) and high-resolution electron energy loss spectroscopy (HREELS). The trans/cis-isomerization of TBA is accompanied by reversible changes in the geometrical and electronic structure of the molecules, allowing to gain mechanistic and quantitative insight into the switching process. In particular, the cross sections for the photoisomerization, the ratio between the cis- and trans-TBA in the photostationary state, and the activation energy for the thermally induced cis → trans reaction have been determined and are found to be strongly reduced compared to the corresponding quantities in the liquid phase. Furthermore, the mechanism of optical excitation and molecular switching of TBA on Au(111) has been identified to arise from a substrate-mediated charge transfer process, whereby photogenerated hot holes in the Au d-band lead to transient positive ion formation, which may subsequently result in the conformational switching of adsorbed TBA. This substrate mediated excitation process for surface-bound TBA is thus completely different from the well-known direct (intramolecular) excitation mechanism operative in the photoisomerization of free molecules. These results demonstrate the feasibility of molecular switching at metal surfaces, but also indicate that the switching properties of the surface-bound species are strongly modified by the interaction with a metal substrate. Therefore, molecular switches at surfaces open the perspective to design and optimize novel properties of functional surfaces, which can be controlled by external stimuli.
机译:分子开关代表一类引人入胜的功能分子,其功能可以通过光或其他外部刺激来在不同分子状态之间可逆地改变。使用诸如自组装的表面科学概念在固体表面上以明确定义的几何形状排列此类分子,会出现新的功能特性,这些特性与诸如分子电子学,传感或生物相容性界面等不同领域相关。为了从微观上了解表面上的分子转换,必须获得有关潜在基本过程的详细知识,例如光诱导转换中的激发机理。在这里,我们对金属表面上专门设计的偶氮苯衍生物(即吸附在Au(111)上的四叔丁基偶氮苯(TBA))进行了案例研究,这是迄今为止研究得最好的可逆构象变化系统之一已经证明。因此,TBA / Au(111)可以被视为模型系统,以便更深入地了解金属表面的分子转换过程。我们已经研究了使用双光子光发射(2PPE)和高分辨率电子能量损失谱(HREELS)与Au(111)表面直接接触的TBA的光诱导和热激活可逆转换。 TBA的反式/顺式异构化伴随着分子的几何和电子结构的可逆变化,从而获得了对转换过程的机械和定量认识。尤其是,已经确定了光异构化的横截面,在光平稳状态下顺式和反式TBA的比例以及热诱导的顺式→反式反应的活化能,发现与液相中的相应量。此外,已经确定了Au(111)上的TBA的光激发和分子转换的机理是由基质介导的电荷转移过程引起的,由此Au d波段中的光生热空穴会导致瞬态正离子形成,这可能是由于随后导致吸附的TBA的构象转换。因此,该表面介导的TBA的底物介导的激发过程与在游离分子的光异构化中起作用的众所周知的直接(分子内)激发机制完全不同。这些结果证明了在金属表面进行分子交换的可行性,但也表明表面结合的物质的交换性质被与金属基底的相互作用强烈地改变。因此,表面上的分子开关为设计和优化功能表面的新特性打开了视野,该功能可以通过外部刺激来控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号