首页> 外文期刊>Surface Science >Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using D-glucose and its model surrogate glycolaldehyde
【24h】

Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using D-glucose and its model surrogate glycolaldehyde

机译:Pt(111)上生物质衍生的含氧化合物的重整:使用D-葡萄糖及其模型替代乙醇醛的表面科学演示

获取原文
获取原文并翻译 | 示例
       

摘要

Molecules derived from cellulosic biomass, such as glucose, represent an important renewable feedstock for the production of hydrogen and hydrocarbon-based fuels and chemicals. Development of efficient catalysts for their reformation into useful products is needed; however, this requires a detailed understanding of their adsorption and reaction on catalytically active transition metal surfaces. In this paper we demonstrate that the standard surface science techniques routinely used to characterize the reaction of small molecules on metals are also amenable for use in studying the adsorption and reaction of complex biomass-derivatives on single crystal metal surfaces. In particular, Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS) combined with Density Functional Theory (DFT) calculations were used to elucidate the adsorption configuration of D-glucose and glycolaldehye on Pt(111). Both molecules were found to adsorb in an η_1 aldehyde configuration partially validating the use of simple, functionally-equivalent model compounds for surface studies of cellulosic oxygenates.
机译:来源于纤维素生物质的分子,例如葡萄糖,代表了一种重要的可再生原料,用于生产氢和碳氢化合物基燃料和化学品。需要开发有效的催化剂以将其转化为有用的产品;然而,这需要对它们在催化活性过渡金属表面上的吸附和反应的详细了解。在本文中,我们证明了常规用于表征小分子在金属上反应的标准表面科学技术也适用于研究复杂的生物质衍生物在单晶金属表面上的吸附和反应。特别是,使用程序升温解吸(TPD)和高分辨率电子能量损失谱(HREELS)结合密度泛函理论(DFT)的计算来阐明D-葡萄糖和甘露糖醛在Pt(111)上的吸附构型。发现两个分子都以η_1醛构型吸附,部分验证了简单,功能等效的模型化合物在纤维素含氧化合物表面研究中的应用。

著录项

  • 来源
    《Surface Science》 |2012年第24期|p.L91-L94|共4页
  • 作者单位

    Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104-6363, USA;

    Catalysis Center for Energy Innovation (CCEI), Department of Chemical Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA;

    Catalysis Center for Energy Innovation (CCEI), Department of Chemical Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA;

    Catalysis Center for Energy Innovation (CCEI), Department of Chemical Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA;

    Catalysis Center for Energy Innovation (CCEI), Department of Chemical Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA;

    Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104-6363, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    density functional theory; glucose; glycolaldehyde; Pt(111); HREELS;

    机译:密度泛函理论;葡萄糖;乙醇醛铂(111);头巾;
  • 入库时间 2022-08-18 03:05:16

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号