首页> 外文学位 >Reaction pathways of biomass-derived oxygenates on noble metal surfaces.
【24h】

Reaction pathways of biomass-derived oxygenates on noble metal surfaces.

机译:生物质衍生的含氧化合物在贵金属表面上的反应途径。

获取原文
获取原文并翻译 | 示例

摘要

As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway common on clean Pt(111). This has implications in the hydrodeoxygenation of biomass-derived compounds for the production of value-added chemicals like 2-methylfuran from furfural, or the catalytic upgrading of sugars. Ultimately, identification of the reactive mechanisms of biomass-derived molecules on different unique surfaces has lead to a greater understanding for what makes a more selective catalyst for specific chemical pathways.
机译:随着全球对能源的需求持续增长,与化石燃料消耗增加相关的环境问题促使人们使用生物质作为碳可再生的替代能源。通过催化作用控制包含生物质的糖的反应化学,对于有效生产绿色燃料和增值化学品至关重要。关于生物质转化催化剂的最新研究表明,贵金属催化剂体系可有效地将生物质重整为氢燃料,并将生物质衍生的化合物加氢脱氧为增值化学品。特别地,在初步水相重整研究中,Pt和Pd表面显示出作为重整催化剂的巨大前景。理解这些分子在催化剂表面反应所依据的机制,以确定结构-活性关系和键断裂能,以为设计更具活性和选择性的催化剂提供框架,变得至关重要。基本的表面科学技术提供了实现此目的的工具;然而,迄今为止,该领域的工作仅限于简单模型分子,例如乙醇和乙二醇。在此,在Pt和Pd单晶催化剂上生物质衍生的糖葡萄糖的超高真空表面科学研究中,利用程序升温解吸和高分辨率电子能量损失谱。总的来说,已确定开环葡萄糖分子的醛功能在初始键和重整反应途径中起着不可或缺的作用,这表明使用醛糖乙醇醛和甘油醛作为最合适的模型化合物以供将来研究。此外,发现在Pt(111)表面添加Zn原子会显着降低含醛化合物的CH和CC键断裂活性,从而导致与纯Pt(111)常见的脱羰途径相反的优选脱氧途径。这对衍生自生物质的化合物进行加氢脱氧,以从糠醛生产增值化学品(如2-甲基呋喃)或糖的催化提质具有影响。最终,对生物质衍生的分子在不同独特表面上的反应机理的识别已导致人们对什么使特定化学途径更具选择性的催化剂有了更深入的了解。

著录项

  • 作者

    McManus, Jesse R.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Chemical.;Chemistry General.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号