首页> 外文期刊>Surface Science >A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT plus NBO analysis
【24h】

A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT plus NBO analysis

机译:基于N掺杂的ZnO作为改性纳米结构介质的高灵敏度化学气体检测装置:DFT和NBO分析

获取原文
获取原文并翻译 | 示例
       

摘要

We presented a density functional theory study of the adsorption of O-3 and NO2 molecules on ZnO nanoparticles. Various adsorption geometries of O-3 and NO2 over the nanoparticles were considered. For both O-3 and NO2 adsorption systems, it was found that the adsorption on the N-doped nanoparticle is more favorable in energy than that on the pristine one. Therefore, the N-doped ZnO has a better efficiency to be utilized as O-3 and NO2 detection device. For all cases, the binding sites were located on the zinc atoms of the nanoparticle. The charge analysis based on natural bond orbital (NBO) analysis indicates that charge was transferred from the surface to the adsorbed molecule. The projected density of states of the interacting atoms represent the formation of chemical bonds at the interface region. Molecular orbitals of the adsorption systems indicate that the HOMOs were mainly localized on the adsorbed O-3 and NO2 molecules, whereas the electronic densities in the LUMOs were dominant at the ZnO nanocrystal surface. By examining the distribution of spin densities, we found that the magnetization was mainly located over the adsorbed molecules. For NO2 adsorbate, we found that the symmetric and asymmetric stretches were shifted to a lower frequency. The bending stretch mode was shifted to the higher frequency. Our DFT results thus provide a theoretical basis for why the adsorption of O-3 and NO2 molecules on the N-doped ZnO nanoparticles may increase, giving rise to design and development of innovative and highly efficient sensor devices for O-3 and NO2 recognition. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们提出了O-3和NO2分子在ZnO纳米颗粒上吸附的密度泛函理论研究。考虑了在纳米颗粒上O-3和NO2的各种吸附几何形状。对于O-3和NO2吸附系统,发现在N掺杂纳米颗粒上的吸附比在原始N掺杂纳米颗粒上的吸附在能量上更有利。因此,N掺杂的ZnO具有更好的效率用作O-3和NO2检测装置。对于所有情况,结合位点位于纳米颗粒的锌原子上。基于自然键轨道(NBO)分析的电荷分析表明,电荷已从表面转移到吸附的分子上。相互作用原子的状态的预计密度表示在界面区域上化学键的形成。吸附系统的分子轨道表明,HOMOs主要位于被吸附的O-3和NO2分子上,而LUMOs中的电子密度在ZnO纳米晶体表面占主导地位。通过检查自旋密度的分布,我们发现磁化作用主要位于吸附的分子上方。对于NO2吸附物,我们发现对称和不对称拉伸移至较低频率。弯曲拉伸模式转移到更高的频率。因此,我们的DFT结果为为什么O-3和NO2分子在N掺杂的ZnO纳米颗粒上的吸附可能增加的原因提供了理论基础,从而引发了创新和高效的O-3和NO2识别传感器设备的设计和开发。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Surface Science》 |2018年第2期|150-163|共14页
  • 作者单位

    Azarbaijan Shahid Madani Univ, Mol Simulat Lab, Tabriz, Iran|Azarbaijan Shahid Madani Univ, Computat Nanomat Res Grp, Tabriz, Iran|Azarbaijan Shahid Madani Univ, Fac Basic Sci, Dept Chem, Tabriz, Iran;

    Azarbaijan Shahid Madani Univ, Mol Simulat Lab, Tabriz, Iran|Azarbaijan Shahid Madani Univ, Computat Nanomat Res Grp, Tabriz, Iran|Azarbaijan Shahid Madani Univ, Fac Basic Sci, Dept Chem, Tabriz, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Density functional theory; NO2; O-3; ZnO nanoparticle; Adsorption; Molecular orbital;

    机译:密度泛函理论;NO2;O-3;ZnO纳米颗粒;吸附;分子轨道;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号