首页> 外文期刊>Structural Safety >Quantum-inspired Boolean states for bounding engineering network reliability assessment
【24h】

Quantum-inspired Boolean states for bounding engineering network reliability assessment

机译:受量子启发的布尔状态用于边界工程网络可靠性评估

获取原文
获取原文并翻译 | 示例
       

摘要

Significant methodological progress has taken place to quantify the reliability of networked systems over the past decades. Both numerical and analytical methods have enjoyed improvements via a host of advanced Monte Carlo simulation strategies, state space partition methods, statistical learning, and Boolean functions among others. The latter approach exploits logic to approximate network reliability assessments efficiently while offering theoretical error guarantees. In parallel, physicists have made progress modeling complex systems via tensor networks (TNs), particularly quantum many-body systems. Inspired by the representation power of quantum TNs, this paper offers a new approach to efficiently bound all-terminal network reliability (ATR). It does so by exactly solving a related network Boolean satisfiability counting problem (or #SAT(NET)), represented as a TN, by counting configurations in which all network nodes are connected to at least a neighbor. Our #SAT(NET )counting outperforms state-of-the-art approximate and exact counters for the same problem as shown for challenging two-dimensional lattice networks of increasing size. While the over-counting from #SAT NET increases exponentially relative to the number of configurations that satisfy ATR problems (or #RELAT), the bias is predictable for ideal networks, such as lattices, and our upper bound is guaranteed with 100% confidence. This bound also cuts through the upper bound from other analytical methods for the ATR problem, such as recursive decomposition algorithms (RDA)-a desirable feature when exact or approximate methods with error guarantees fail to scale. Clearly, our goal is not to solve the general stochastic network reliability problem, which remains a #P problem in the computational complexity hierarchy (i.e., a counting version of non-deterministic polynomial time [NP] problems for which there is no known polynomial time algorithms to find their solutions). Instead, we present a novel bounding technique for network reliability, which relies on exactly counting configurations for our network satisfiability problem by using quantum computing principles. We offer a proof for the counting bound to hold in a connectivity ATR sense, and illustrate trends with cubic and lattice networks. Overall, the proposed method provides an alternative to available system reliability assessment approaches, and opens directions for future research, especially as discoveries in logic, algebraic projections, and quantum computation continue to accrue.
机译:在过去的几十年中,在量化网络系统的可靠性方面已经取得了重大的方法学进展。数值和分析方法都通过许多先进的蒙特卡洛模拟策略,状态空间划分方法,统计学习和布尔函数等得到了改进。后一种方法利用逻辑来有效地近似网络可靠性评估,同时提供理论上的错误保证。同时,物理学家通过张量网络(TNs),特别是量子多体系统,对复杂的系统进行了建模。受量子TN表示能力的启发,本文提供了一种有效绑定全终端网络可靠性(ATR)的新方法。它通过对所有网络节点至少连接到邻居的配置进行计数,从而精确地解决了一个相关的网络布尔可满足性计数问题(或#SAT(NET))(表示为TN)。我们针对相同问题的#SAT(NET)计数性能优于最先进的近似计数器和精确计数器,这是挑战规模不断扩大的二维晶格网络所显示的。尽管相对于满足ATR问题(或#RELAT)的配置数量,来自#SAT NET的超计数呈指数增长,但对于理想的网络(例如晶格)而言,偏差是可以预测的,并且我们的上限可以保证100%可信度。此界限也突破了ATR问题其他分析方法的上限,例如递归分解算法(RDA)-当具有错误保证的精确或近似方法无法缩放时,这是一个理想功能。显然,我们的目标不是解决一般的随机网络可靠性问题,它仍然是计算复杂性层次结构中的#P问题(即,不确定的多项式时间[NP]问题的计数版本,而该问题没有已知的多项式时间找到他们的解决方案的算法)。取而代之的是,我们提出了一种新颖的网络可靠性边界技术,该技术依靠使用量子计算原理为我们的网络可满足性问题精确计数配置。我们为连接ATR意义上的计数界提供了证明,并说明了立方和晶格网络的趋势。总体而言,所提出的方法为可用的系统可靠性评估方法提供了一种替代方法,并为未来的研究打开了方向,尤其是随着逻辑,代数投影和量子计算的发现不断增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号