首页> 外文期刊>Structural health monitoring >A hybrid method coupling empirical mode decomposition and a long short-term memory network to predict missing measured signal data of SHM systems
【24h】

A hybrid method coupling empirical mode decomposition and a long short-term memory network to predict missing measured signal data of SHM systems

机译:混合方法耦合经验模式分解和长短期存储器网络,以预测SHM系统的缺失测量信号数据

获取原文
获取原文并翻译 | 示例
       

摘要

Missing data, especially a block of missing data, inevitably occur in structural health monitoring systems. Because of their severe negative effects, many methods that use measured data to infer missing data have been proposed in previous research to solve the problem. However, capturing complex correlations from raw measured signal data remains a challenge. In this study, empirical mode decomposition is combined with a long short-term memory deep learning network for the recovery of the measured signal data. The proposed hybrid method converts the missing data imputation task as a time series prediction task, which is then solved by a “divide and conquer” strategy. The core concept of this strategy is the prediction of the subsequences of the raw measured signal data, which are decomposed by empirical mode decomposition rather than directly predicted, as the decomposition can assist in the modeling of the irregular periodic changes of the measured signal data. In addition, the long short-term memory network in the hybrid model can remember more long-range correlations of subsequences than can the traditional artificial neural network. Three widely used prediction models, namely, the autoregressive integrated moving average, support vector regression, and artificial neural network models, are also implemented as benchmark models. Raw acceleration data collected from a cable-stayed bridge are used to evaluate the performance of the proposed method for missing measured signal data imputation. The recovery results of the measured signal data demonstrate that the proposed hybrid method exhibits excellent performance from two perspectives. First, the decomposition by empirical mode decomposition can improve the accuracy of the core long short-term memory prediction model. Second, the long short-term memory model outperforms other benchmark models because it can fit more microscopic changes of measured values. The experiments conducted in this study also suggest that the change patterns of raw measured signal data are complex, and it is therefore important to extract the features before modeling.
机译:缺少数据,尤其是缺失数据块,不可避免地发生在结构健康监测系统中。由于其严重的负面影响,在先前的研究中提出了许多使用测量数据来推断数据的方法,以解决问题。然而,从原始测量信号数据捕获复杂的相关性仍然是一个挑战。在本研究中,经验模式分解与长短期存储器深度学习网络组合,用于恢复测量的信号数据。所提出的混合方法将缺失的数据归档任务转换为时间序列预测任务,然后通过“分割和征服”策略来解决。该策略的核心概念是预测原始测量信号数据的子句,其通过经验模式分解而不是直接预测,因为分解可以有助于建模测量信号数据的不规则周期性变化。此外,混合模型中的长短期内存网络可以记住与传统人工神经网络的随后的更多远程相关性。三种广泛使用的预测模型,即自回归综合移动平均线,支持向量回归和人工神经网络模型也被实施为基准模型。从斜率座椅收集的原始加速数据用于评估所提出的测量信号数据归档的方法的性能。测量信号数据的恢复结果表明,所提出的混合方法从两个视角表现出优异的性能。首先,通过经验模式分解的分解可以提高核心长短短期存储器预测模型的准确性。其次,长短期内存模型优于其他基准模型,因为它可以符合测量值的更多微观变化。本研究中进行的实验还表明原始测量信号数据的变化模式是复杂的,因此在建模之前提取特征是重要的。

著录项

  • 来源
    《Structural health monitoring》 |2021年第4期|1778-1793|共16页
  • 作者单位

    Institute of Urban Smart Transportation & Safety Maintenance Shenzhen University;

    Institute of Urban Smart Transportation & Safety Maintenance Shenzhen University|Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering Shenzhen University;

    Institute of Urban Smart Transportation & Safety Maintenance Shenzhen University;

    Institute of Urban Smart Transportation & Safety Maintenance Shenzhen University;

    Institute of Urban Smart Transportation & Safety Maintenance Shenzhen University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; structural health monitoring; time series; imputation; machine learning;

    机译:深度学习;结构健康监测;时间序列;估算;机器学习;
  • 入库时间 2022-08-19 02:28:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号