首页> 外文期刊>Structural health monitoring >Bio-compatible wireless inductive thin-film strain sensor for monitoring the growth and strain response of bone in osseointegrated prostheses
【24h】

Bio-compatible wireless inductive thin-film strain sensor for monitoring the growth and strain response of bone in osseointegrated prostheses

机译:生物兼容的无线电感薄膜应变传感器,用于监测骨整合假肢骨骼的生长和应变响应

获取原文
获取原文并翻译 | 示例
           

摘要

Many benefits can be derived from in situ monitoring of the growth, load response, and condition of human bone. In particular, bone monitoring offers opportunity to advance understanding and designing of osseointegrated mechanical components fixated into bones such as artificial joints and more recently osseointegrated prosthetic limbs. In this study, a bio-compatible wireless inductive strain-sensing system is proposed, which is designed to monitor the growth and strain response of bone-hosting implants. Thin-film circuit fabrication methods based on lithography are adopted to develop a conformable wireless strain sensor designed as a passive resistive–inductive–capacitive circuit. Two forms of strain sensing are designed into the thin-film sensor. First, parallel-plate capacitors fabricated from metal electrodes and a polyimide dielectric layer are introduced to modulate bone strain onto a resonant frequency of the thin-film sensor. A second resonant frequency is introduced in the sensor design to measure circumferential bone growth using a highly nonlinear titanium-resistive element, whose resistance exponentially increases well after 1000 µε under monotonic increasing hoop strain. To ensure the possibility for implantation in animal subjects in future study, the thin-film sensing system is fabricated using mainly bio-compatible polymers (e.g. polyimide) and metals (e.g. titanium and gold). Fabricated prototypes inductively coupled using an impedance analyzer are experimentally tested. Results reveal linear response of the first resonant frequency to low levels of strain with a sensitivity of 4.555 Hz per unit microstrain. The second resonant frequency is sensitive to the resistive fuse with nonlinear fuse behavior initiated above 1000 µε and impedance phase increasing exponentially thereafter.
机译:可以从原位监测生长,负荷响应和人骨状况来源的许多益处。特别是,骨监测提供了推进和设计将固定成骨骼的骨整合机械部件的理解和设计成为人工关节和最近的骨整合假肢肢体。在本研究中,提出了一种生物兼容的无线电感应变感测系统,其旨在监测骨托管植入物的生长和应变响应。采用基于光刻的薄膜电路制造方法开发设计为被动电阻电容电路的适形无线应变传感器。两种形式的应变感测设计在薄膜传感器中。首先,引入由金属电极和聚酰亚胺介电层制造的平行板电容器以调节骨应变在薄膜传感器的谐振频率上。在传感器设计中引入了第二谐振频率,以使用高度非线性钛电阻元件来测量周向骨生长,其电阻在单调增加的环箍菌株下1000μL之后在1000μL之后良好地增加。为了确保在未来的研究中植入动物受试者的可能性,主要使用生物相容聚合物(例如聚酰亚胺)和金属(例如钛和金)制造薄膜传感系统。使用阻抗分析仪电感耦合的制造原型是通过实验测试的。结果显示第一谐振频率的线性响应与低水平的菌株,灵敏度为4.555Hz,每单位微陶器。第二谐振频率对具有以上1000μL的非线性熔丝行为的电阻熔丝敏感,并且其后指数增加的阻抗相位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号